

Biological and Water Quality Study of Mill Creek 2021

Report citation:

Midwest Biodiversity Institute (MBI). 2021. Biological and Water Quality Assessment of Mill Creek 2021. Hamilton County, Ohio. Technical Report MBI/2017-6-8. Columbus, OH 43221-0561. 74 pp. + appendices. http://www.msdgc.org/initiatives/water_quality/index.html.

Portions of this document were made possible by a generous grant from ESRI. The GIS elements of this report were also made possible by a grant from ESRI.

Biological and Water Quality Study of Mill Creek 2021

Hamilton County, Ohio

MBI Technical Report/2022-6-8

June 30, 2022 Revised August 31, 2022

Prepared for:

Metropolitan Sewer District of Greater Cincinnati 1081 Woodrow Street Cincinnati, OH 45204 Chris Hall, Project Manager Chris.Hall@cincinnati-oh.gov

Submitted by:

Midwest Biodiversity Institute
P.O. Box 21561
Columbus, Ohio 43221-0561
Chris O. Yoder, Research Director
cyoder@mwbinst.com

TABLE OF CONTENTS

LIST OF TABLES	iv
LIST OF FIGURES	v
ACKNOWLEDGEMENTS	vii
FOREWORD	1
What is a Biological and Water Quality Survey?	1
Scope of the 2021 Mill Creek Biological and Water Quality Assessment	1
EXECUTIVE SUMMARY	2
Scope and Purpose	2
Highlighted Findings	2
General Conditions in Mill Creek	2
Aquatic Life Use Attainment Status	4
Recreational Use Status	4
Causes and Sources of Non-attainment	4
Trajectories in Key Indicators	10
CONCLUSIONS and RECOMMENDATIONS	13
Mill Creek Watershed Designated Use Attainment Status	13
Aquatic Life Use Recommendations	13
Aquatic Life Use Attainment Status	13
Recreational Use Status	15
Linking Impairments to Sources and Reductions in Pollution Required to Meet WQS	15
BIOLOGICAL AND WATER QUALITY STUDY OF MILL CREEK 2021	17
Introduction	17
MSDGC Watershed Bioassessment Scope and Purpose	18
METHODS	20
Monitoring Design	20
Biological and Water Quality Surveys	20
Biological Methods	
Fish Assemblage Methods	23
Macroinvertebrate Assemblage Methods	24
Area of Degradation and Attainment Values	
Habitat Assessment	25

Chemical/Physical Methods	26
Water Column Chemical Quality	26
Sediment Chemical Quality	27
Determining Use Attainment Status	27
Aquatic Life	27
Recreation	28
Determining Use Attainability	29
Determining Causal Associations	30
Hierarchy of Water Indicators	
STUDY AREA DESCRIPTION	33
General Setting	33
Subecoregion Characteristics	33
Description of Pollution Sources and Other Stressors	
Point Sources	
Wet Weather Sources	35
Riparian and Stream Habitat	
RESULTS and DISCUSSION	
Chemical/Physical Water Quality	
Flow Regime	
Water Column Chemistry	
Water Quality Criteria Exceedances	
Exceedances of Biological Effect Thresholds	
Sediment Chemistry	
Biological Assemblages	
Fish Assemblage Results	
Macroinvertebrate Assemblage Results	
REFERENCES	
APPENDIX A: Mill Creek 2021 Raw Chemical Data	
APPENDIX B: Mill Creek 2021 Fish Assemblage Data	
APPENDIX C: Mill Creek 2021 Macroinvertebrate Assemblage Data	
APPENDIX D: Mill Creek 2021 QHEI Metrics and Scores	
ADDENDIY E. Mill Crook 2021 Primary Hoodwater Habitat Data	E_1

LIST OF TABLES

	Aquatic life use attainment status in the 2021 Mill Creek study area with associated
(causes of impairment listed for sites in partial and non-attainment and weighted by
9	severity of threshold exceedances. Threat factors are listed for fully attaining sites.
	Existing and recommended uses are listed for mainstem reaches and tributaries. A
{	glossary of causal terms is listed at the bottom of the table5
Table 2. R	Recreational use attainment status at sites sampled in the 2021 Mill Creek study area.
ſ	Minimum, mean, and maximum Escherichia coli bacteria counts are provided along
,	with exceedances of the Ohio Primary Contact Recreation (PCR) 30-day geometric
ı	mean and statistical threshold value (STV) and the Secondary Contact (SC) maximum
	criterion7
Table 3. I	List of sampling locations in the 2021 Mill Creek study area with site code, stream
	name, proximity to CSO, SSO, WWTP, and industrial point sources, and the biological,
	habitat, and chemical parameters collected at each site
	Level IV subregions of the Mill Creek watershed and their key attributes (from Woods
	et al. 1995)
Table 5. E	xceedances of water quality criteria for aquatic life based on grab sampling and
(continuous monitoring in the 2021 Mill Creek study area
Table 6. C	Conventional, demand, and nutrient parameters in the 2021 Mill Creek study. Mean
ć	ambient values are color coded by their IPS ranges that correspond to tiered uses and
1	narrative quality; blue – EWH (exceptional); green – WWH (good); yellow – MWH
	(fair); orange – LRW (poor); red – very poor quality. IPS threshold goals for each site
	are in the column to the right of each value
	Mean values for selected demand and nutrient related parameters in the 2021 Mill
	Creek study area including the Mill Creek and East Fork mainstem and selected Mill
	Creek tributaries. ALU is the applicable aquatic life use and IPS are the IPS thresholds
	that apply to each site
	Mean values for selected urban related parameters in the 2021 Mill Creek study area
i	including the Mill Creek and East Fork mainstem and selected Mill Creek tributaries.
	ALU is the applicable aquatic life use and IPS are the IPS thresholds that apply to each
	site50
Table 9. N	Metals in sediments in the 2021 Mill Creek study area. Yellow shaded values exceed
	the Threshold Effect Concentration (TEC) of MacDonald et al. (2000). No values
(exceeded the Probable Effect Concentration (PEC)53
Table 10.	PAH compounds in sediments in the 2021 Mill Creek study area. Yellow shaded values
	exceed the TEC and orange shaded values exceed the PEC values of MacDonald et al.
	(2000)54
Table 11.	Qualitative Habitat Evaluation Index (QHEI) scores showing good and modified habitat
	attributes and ratios at sites in the Mill Creek study area in 2021. Narrative ratings and
	color coding appear in the legend at bottom of table
	QHEI and Hydro QHEI scores and selected attributes in the 2021 Mill Creek study
	area. Selected values are color coded by their IPS ranges that correspond to tiered
	uses and narrative quality; blue – EWH (exceptional); green – WWH (good); yellow –

	MWH (fair); orange – LRW (poor); red – very poor quality. IPS threshold goals for each site are in the column to the right of each value
	Fish assemblage response indicators in the Mill Creek, the East Fork, and West Fork
	Will Creek in 2021. The results for each indicator are color coded in accordance with
t	he key at the bottom of the table 63
Table 14.	Fish species (excluding hybrids) collected in the WWH reach of the Mill Creek
r	mainstem in 2021 showing catch-per-unit-effort (CPUE) and percent by numbers
	compared to 201665
Table 15.	Fish species (excluding hybrids) collected in the MWH reach of the Mill Creek
	nainstem in 2021 showing catch-per-unit-effort (CPUE) and percent by numbers
	compared to 2016 66
	Macroinvertebrate assemblage response indicators in the Mill Creek, the East Fork,
	and West Fork Mill Creek in 2021. The results for each indicator are color coded in
	accordance with the key at the bottom of the table. ICI and qualitative metrics are on
	a quality scale consistent with a gradient from exceptional to very poor and not related to ICI calibration curves
ı	elated to ici calibration curves
	LIST OF FIGURES
_	Weighted and unweighted causes associated with impairment of aquatic life in the
	Mill Creek mainstem study area in 2021. Major subcategories of causes are derived
	rom the causes listed in Table 1 9
	Area of Degradation (ADV) and Area of Attainment (AAV) values for the IBI (upper
	eft), MIwb (upper right), and ICI (lower right) in the Mill Creek mainstem between
	1992 and 2021. The miles of full and non-attainment between 1992 and 2021 are
	depicted in the lower right panel
	Aquatic life use attainment status for the Warmwater Habitat suite of use tiers in the Will Creek study area during 2021. Green circles – full attainment of aquatic life use
	ier; yellow – partial attainment; red – non-attainment. Site codes correspond to those
	described in Tables 1 and 2. Sites recommended for classification as Primary
	Headwater Habitat (PHWH) appear with their classification results. Blue squares –
	PHWH Class 3A or B; orange squares PHWH Class 2
	Map of recreational use attainment status for the Primary Contact Recreational use in
•	he 2021 Mill Creek study area expressed as attainment (green) or non-attainment
	red) based on E. coli values 16
	The historical occurrence of the Lower Mill Creek watershed (upper) and the current
٧	watershed (lower) showing the current MSDGC combined sewer system and the
	nistorical subjugation of natural streams (after MSDGC 2011b)
Figure 6. T	The 2021 Mill Creek study area showing sampling locations by site code (see Table 1)
	and the occurrence of CSO/SSO/PSO locations22
	Hierarchy of administrative and environmental indicators which can be used for water
C	quality management activities such as monitoring and assessment, reporting, and the

evaluation of overall program effectiveness. This is patterned after a developed by U.S. EPA (1995a,b) and further enhanced by Karr and Y Figure 8. Flow measured at the USGS gauge at Carthage (RM 10.0) during Ma	/oder (2004) 31 ly 1-October 31
during 2011, 2013, 2016, and 2021. The median, 80%, 10%, and $Q_{7,1}$	
indicated on each hydrograph	2011, 2016, and ses are shown as ve diel swings is
Figure 10 . Box-and-whisker plot of continuous D.O. (upper left), temperature	
pH (lower left) from Datasonde continuous recorders at 24 sites in the Mill Creek and the lower East Fork during July 11-15 and July 20-22, and MWH daily average and minimum criteria and IPS thresholds are dashed and solid lines. Major discharges and tributaries are indicate	ne mainstem of 2021. The WWH e indicated by d across the top.
Figure 11 . Mean 5-day BOD in 1997, 2011, 2013, 2016, and 2021 (upper) and	
maximum, and minimum values in 2021 at Mill Creek mainstem site:	
biological effect thresholds for the WWH and MWH uses are shown	as dashed lines for
BOD and the PCR geometric mean, STV, and SCR criteria for E. coli a	e shown as
dashed and solid lines	
Figure 12. Median total ammonia-N (upper left), total phosphorus (upper righ	• •
(lower right), and total Kjeldahl nitrogen (lower right) at Mill Creek n	
1992, 1997, 2011, 2016, and 2021 based on grab samples. The WWF	
thresholds are indicated by dashed and solid lines. Major discharges are indicated across the top.	
Figure 13. Median conductivity at Mill Creek mainstem sites in 1992, 1997, 20	
2021 based on grab samples (upper). The IPS biological effect thresh	
and MWH uses are shown as dashed lines. Box-and-whisker plot of conductance (lower) from Datasonde continuous recorders at 24 site	continuous specific
mainstem of Mill Creek and the lower East Fork during July 11-15 an	
The WWH and MWH IPS thresholds are indicated by dashed and soli	d lines. Major
discharges and tributaries are indicated across the top	
Figure 14. Median chloride at Mill Creek mainstem sites in 1992, 1997, 2011,	
based on grab samples (upper). The IPS biological effect thresholds f	
MWH uses are shown as dashed lines	
Figure 15 . QHEI scores in the mainstem of Mill Creek in 1992, 2011, 2013, 201 range between good and poor habitat is indicated by the shaded are	
(good) to 45 (poor). The MWH reach and discharges and tributaries	
the graphic.	
Figure 16. Index of biotic integrity (IBI) results for the Mill Creek mainstem (up	
results (lower) in 1992, 2011, 2013, 2014, 2016, and 2021 (upper). T MWH biocriteria are depicted with major pollution sources and tribu	he WWH and
top of each graph	61

Figure 17. The percentage of fish with DELT anomalies in the mainstem of Mill Creek during
1992, 2011, 2013, 2014, 2016, and 2021. The range of %DELT from normal to elevated
incidence are depicted with major pollution sources and tributaries along the top of
each graph62
Figure 18. Invertebrate Community Index (ICI) results for the Mill Creek mainstem in 1992,
2011, 2014, 2016, and 2021. The WWH and MWH biocriteria are depicted with major
pollution sources and tributaries along the top of each graph67

ACKNOWLEDGEMENTS

Chris O. Yoder, MBI, served as the report editor and project manager. Contributions to the report and the analyses included Vickie L. Gordon, Paul M. DeRolf, and Marty Knapp of MBI. Database management and data analysis was provided by Ed Rankin, MBI. Field crew leaders were Paul DeRolf (fish assemblage), Marty Knapp (macroinvertebrate assemblage), and Vickie Gordon (Datasondes and chemical assessment). Field sampling assistance was provided by Chelsea Dingess, Alex Roller-Knapp, Jack Freda, Samantha Finnerty, Bradley Axe, and Ashely Smith. Matt Lehmann, Hamilton Co. SWCD, provided the chemical/physical, habitat, and macroinvertebrate data for upper Cooper Creek and assisted with the assessment of use designation assignments and delineation of impairment causes. Dr. Michael Booth, University of Cincinnati, and his students provided assistance with fish sampling and provided the upper Cooper Creek fish data. Logistical support was provided by Allison Boehler and Chelsea Dingess. Chemical analysis was provided by MSDGC laboratory under the direction of Reese Johnson. Overall MSDGC project management was provided by Chris Hall and Laura Boyd. The draft report was reviewed and edited by Chris Hall, Laura Boyd, and Alaina Morman of MSDGC.

Glossary of Terms

Ambient Monitoring Sampling and evaluation of receiving waters not

necessarily associated with episodic perturbations.

Aquatic Assemblage An association of interacting populations of organisms

in a given waterbody, for example, the fish assemblage

or the benthic macroinvertebrate assemblage.

Aquatic Community An association of interacting assemblages in a given

waterbody, the biotic component of an ecosystem.

Aquatic Life Use (ALU) A beneficial use designation in which the waterbody

provides suitable habitat for survival and reproduction of desirable fish, shellfish, and other aquatic organisms; classifications specified in State water quality standards relating to the level of protection afforded to the resident biological community by the

custodial State agency.

Assemblage Refers to all of the various species of a particular

taxonomic grouping (e.g., fish, macroinvertebrates, algae, submergent aquatic plants, etc.) that exist in a particular habitat. Operationally this term is useful for defining biological assessment methods and their attendant assessment mechanisms, i.e., indices of

biotic integrity (IBI), O/E models, or fuzzy set models.

Attainment Status The state of condition of a waterbody as measured by

chemical, physical, and biological indicators. Full attainment is the point at which measured indicators signify that a water quality standard has been met and that the designated use is both attained and protected. Non-attainment is when the designated use is not attained based on one or more of these indicators being below the required condition or state for that

measure or parameter.

Attribute A measurable part or process of a biological system.

Beneficial Uses Desirable uses that acceptable water quality should support. Examples are drinking water supply primary.

support. Examples are drinking water supply, primary contact recreation (such as swimming), and aquatic life

support.

Benthic Macroinvertebrates

Animals without backbones, living in or on the substrates, of a size large enough to be seen by the unaided eye, and which can be retained by a U.S. Standard No. 30 sieve (0.595 mm openings). Also referred to as benthos, infauna, or macrobenthos.

Best Management Practice

An engineered structure or management activity, or combination of these that eliminates or reduces an adverse environmental effect of a pollutant, pollution, or stressor effect.

Biological Assessment

An evaluation of the biological condition of a waterbody using surveys of the structure and function of a community of resident biota; also known as bioassessment. It also includes the interdisciplinary process of determining condition and relating that condition to chemical, physical, and biological factors that are measured along with the biological sampling.

Biological Criteria (Biocriteria)

<u>Scientific meaning</u>: quantified values representing the biological condition of a waterbody as measured by structure and function of the aquatic communities typically at reference condition; also known as biocriteria.

Regulatory meaning: narrative descriptions or numerical values of the structure and function of aquatic communities in a waterbody necessary to protect a designated aquatic life use, implemented in, or through state water quality standards.

Biological Condition Gradient

A scientific model that describes the biological responses within an aquatic ecosystem to the increasing effects of stressors.

Biological Diversity

Refers to the variety and variability among living organisms and the ecological complexes in which they occur. Diversity can be defined as the number of different taxa and their relative frequencies. For biological diversity, these taxa are organized at many levels, ranging from complete ecosystems to the biochemical structures that are the molecular basis of heredity. Thus, the term encompasses different

ecosystems, species, and genes; also known as biodiversity.

Biological Indicator

An organism, species, assemblage, or community characteristic of a particular habitat, or indicative of a particular set of environmental conditions; also known as a bioindicator.

Biological Integrity

The ability of an aquatic ecosystem to support and maintain a balanced, adaptive community of organisms having a species composition, diversity, and functional organization comparable to that of natural habitats within a region (after Karr and Dudley 1981).

Biological Monitoring

The use of a biological entity (taxon, species, assemblage) as a detector and its response as a measure of response to determine environmental conditions. Ambient biological surveys and toxicity tests are common biological monitoring methods; also known as biomonitoring.

Biological Survey

The collection, processing, and analysis of a representative portion of the resident aquatic community to determine its structural and/or functional characteristics and hence its condition using standardized methods.

Clean Water Act (CWA)

An act passed by the U.S. Congress to control water pollution (formally referred to as the Federal Water Pollution Control Act of 1972). Public Law 92-500, as amended. 33 U.S.C. 1251 et seq.; referred to herein as the CWA.

CWA Section 303(d)

This section of the Act requires States, territories, and authorized Tribes to develop lists of impaired waters for which applicable water quality standards are not being met, even after point sources of pollution have installed the minimum required levels of pollution control technology. The law requires that these jurisdictions establish priority rankings for waters on the lists and develop TMDLs for these waters. States, territories, and authorized Tribes are to submit their list of waters on April 1 in every even-numbered year.

CWA Section 305(b)

Biennial reporting required by the Act to describe the quality of the Nation's surface waters, to serve as an evaluation of progress made in maintaining and restoring water quality, and describe the extent of remaining problems.

Criteria

Limits on a particular pollutant or condition of a waterbody presumed to support or protect the designated use or uses of a waterbody. Criteria may be narrative or numeric and are commonly expressed as a chemical concentration, a physical parameter, or a biological assemblage endpoint.

DELT Anomalies

The percentage of Deformities, Erosions (e.g., fins, barbels), Lesions and Tumors on fish assemblages (DELT). An important fish assemblage attribute that is a commonly employed metric in fish IBIs.

Designated Uses

Those uses specified in state water quality standards for each waterbody or segment whether or not they are being attained.

Disturbance

Any activity of natural or human causes that alters the natural state of the environment and its attributes and which can occur at or across many spatial and temporal scales.

Ecological integrity

The summation of chemical, physical, and biological integrity capable of supporting and maintaining a balanced, integrated adaptive community of organisms having a species composition, diversity, and functional organization comparable to that of natural habitats in the region.

Ecoregion

A relatively homogeneous geographical area defined by a similarity of climate, landform, soil, potential natural vegetation, hydrology, or other ecologically relevant variables; ecoregions are portioned at increasing levels of spatial detail from level I to level IV.

Existing Use

A use that was actually attained in a waterbody on or after November 28, 1975, whether or not they are included in the state water quality standards (November 28, 1975 is the date on which U.S. EPA

promulgated its first water quality standards regulation in 40CFR Part 131). Existing uses must be maintained and cannot be removed.

Index of Biotic Integrity (IBI)

An integrative expression of site condition across multiple metrics comprised of attributes of a biological assemblage. It refers to the index developed by Karr (1981) and explained by Karr et al. (1986). It has been used to express the condition of fish, macroinvertebrate, algal, and terrestrial assemblages throughout the U.S. and in each of five major continents.

MIwb

The Modified Index of Well-Being (MIwb) is based on fish assemblage measures including numbers, biomass, and two diversity indices (Shannon Index) based on numbers and biomass. The numbers and biomass metrics exclude highly tolerant species. It reflects the overall productivity and diversity of the fish assemblage and it frequently responds before the IBI to improvements in water quality and habitat.

Metric

A calculated term or enumeration representing an attribute of a biological assemblage, usually a structural aspect, that changes in a predictable manner with an increased effect of human disturbance.

Monitoring and Assessment

The entire process of collecting data from the aquatic environment using standardized methods and protocols, managing that data, analyzing that data to make assessments in support of multiple program objectives, and disseminating the assessments to stakeholders and the public.

Multimetric Index

An index that combines assemblage attributes, or metrics, into a single index value. Each metric is tested and calibrated to a scale and transformed into a unitless score prior to being aggregated into a multimetric index. Both the index and metrics are useful in assessing and diagnosing ecological condition.

Narrative Biocriteria

Written statements describing the narrative attributes of the structure and function of aquatic communities

in a waterbody necessary to protect a designated aquatic life use.

Natural Condition

This includes the multiplicity of factors that determine the physical, chemical, or biological conditions that would exist in a waterbody in the absence of measurable impacts from human activity or influence.

Numeric Biocriteria

Specific quantitative and numeric measures of the structure and function of aquatic communities in a waterbody necessary to protect a designated aquatic life use.

Qualitative Habitat Evaluation Index

A qualitative habitat evaluation assessment tool that is applied to streams and rivers in Ohio and which is used to identify habitat variables that are important to attainment of the Ohio biological criteria.

Reference Condition

The condition that approximates natural, unimpacted to best attainable conditions (biological, chemical, physical, etc.) for a waterbody. Reference condition is best determined by collecting measurements at a number of sites in a similar waterbody class or region under minimally or least disturbed conditions (by human activity), if they exist. Since undisturbed or minimally disturbed conditions may be difficult or impossible to find in some states, least disturbed conditions, combined with historical information, models or other methods may be used to approximate reference condition as long as the departure from natural or ideal is comprehended. Reference condition is used as a benchmark to establish numeric biocriteria.

Reference Site

A site selected to represent an approximation of reference condition and by comparison to other sites being assessed. For the purpose of assessing the ecological condition of other sites, a reference site is a specific locality on a waterbody that is minimally or least disturbed and is representative of the expected ecological condition of other localities on the same waterbody or nearby waterbodies.

Regional Reference Condition

A description of the chemical, physical, or biological condition based on an aggregation of data from reference sites that are representative of a waterbody type in an ecoregion, subregion, bioregion, or major drainage unit.

Stressors

Physical, chemical, and biological factors that can adversely affect aquatic organisms. The effect of stressors is apparent in the biological responses.

Use Attainability Analysis (UAA)

A structured scientific assessment of the physical, chemical, biological or economic factors affecting attainment of the uses of waterbodies.

Use Classes

A broad capture of a designated use for general purposes such as recreation, water supply, and aquatic life.

Use Subclasses

A subcategorization of use classes into discrete and meaningful descriptions. For aquatic life this would include a hierarchy of warmwater and coldwater uses and additional stratification provided by different levels of warmwater uses and further stratification by waterbody types.

TALU Based Approach

This approach includes tiered aquatic life uses (TALU) based on numeric biological criteria and implementation via an adequate monitoring and assessment program that includes biological, chemical, and physical measures, parameters, indicators and a process for stressor identification.

Tiered Aquatic Life Uses (TALUs)

As defined: The structure of designated aquatic life uses that incorporates a hierarchy of use subclasses and stratification by natural divisions that pertain to geographical and waterbody class strata. TALUs are based on representative ecological attributes and these should be reflected in the narrative description of each TALU tier and be embodied in the measurements that extend to expressions of that narrative through numeric biocriteria and by extension to chemical and physical indictors and criteria.

As used: TALUs are assigned to water bodies based on the protection and restoration of ecological potential. This means that the assignment of a TALU tier to a specific waterbody is done with regard to reasonable restoration or protection expectations and attainability. Hence knowledge of the current condition of a waterbody and an accompanying and adequate assessment of stressors affecting that waterbody are needed to make these assignments.

Total Maximum Daily Load (TMDL)

The maximum amount of a pollutant that a body of water can receive while still meeting water quality standards. Alternatively, a TMDL is an allocation of a water pollutant deemed acceptable to attain the designated use assigned to the receiving water.

Water Quality Standards (WQS)

A law or regulation that consists of the designated use or uses of a waterbody, the narrative or numerical water quality criteria (including biocriteria) that are necessary to protect the use or uses of that particular waterbody, and an antidegradation policy.

Water Quality Management

A collection of management programs relevant to water resource protection that includes problem identification, the need for and placement of best management practices, pollution abatement actions, and measuring the effectiveness of management actions.

List of Acronyms

ALU Aquatic Life Use

BCG Biological Condition Gradient

BNA Base Neutral Acid Compound

CSO Combined Sewer Overflow

CWA Clean Water Act

DELT Deformities, Erosions, Lesions, and Tumors (fish)

ECOS Ohio EPA database framework used by MBI

EPA Environmental Protection Agency

EPT Ephemeroptera, Plecoptera, Trichoptera

HD (or H-D) Hester Dendy artificial substrate sampler

HHEI Headwater Habitat Evaluation Index

IBI Index of Biotic Integrity for fish assemblages

ICI Invertebrate Community Index

IPS Integrated Prioritization System

Lims Laboratory Information Management System

M&A Monitoring and Assessment

MBI Midwest Biodiversity Institute

Mlwb Modified Index of Well-Being

MSDGC Metropolitan Sewer District of Greater Cincinnati

NPDES National Pollutant Discharge Elimination System

OAC Ohio Administrative Code

OCDL Ohio Credible Data Law

OEPA Ohio Environmental Protection Agency

ORC Ohio Revised Code

PAH Polycyclic Aromatic Hydrocarbon

PHWH Primary Headwater Habitat

PSO Pump Station Overflow

PSP Project Study Plan

QDC Qualified Data Collector

QAPP Quality Assurance Program Plan

QHEI Qualitative Habitat Evaluation Index

RM River mile per Ohio EPA RM Index

SOP Standard Operating Procedure

SSO Sanitary Sewer Overflow

TALU Tiered Aquatic Life Use

TMDL Total Maximum Daily Load

UAA Use Attainability Analysis

VOC Volatile Organic Compound

WLA Waste Load Allocation

WQS Water Quality Standards

WRF Water Reclamation Facility

WWTP Wastewater Treatment Plant

FOREWORD

What is a Biological and Water Quality Survey?

A biological and water quality survey, or "biosurvey", is an interdisciplinary monitoring effort coordinated on a waterbody specific or watershed scale. This may involve a relatively simple setting focusing on one or two small streams, one or two principal stressors, and a handful of sampling sites or a much more complex effort including entire drainage basins, multiple and overlapping stressors, and tens of sites. The latter is the case with this study in that Mill Creek represents a watershed of 170 square miles in drainage area with a mix of overlapping stressors and sources in a highly urbanized and legacy industrial landscape. The 2021 assessment is a follow-up to previous surveys of the Mill Creek performed by MBI in 2011, 2013, and 2016 and Ohio EPA in 1992 (Ohio EPA 1994) and 2014 (partial assessment).

Scope of the 2021 Mill Creek Biological and Water Quality Assessment

The scope of the 2021 Mill Creek biological and water quality assessment included the mainstem and parts of three tributaries compared to the full watershed scope of the 2011 survey (MBI 2012). In addition to supporting the instream monitoring requirement of the CSO NPDES permit the overall objectives remained the same:

- 1. Determine the extent to which biological assemblages are impaired (using Ohio EPA methods and criteria);
- 2. Determine the categorical stressors and sources that are associated with those impairments; and,
- 3. Add to the broader databases for the Mill Creek and MSDGC watersheds to track and understand changes through time that occur as the result of abatement actions or other factors.

The data presented herein were processed, evaluated, and synthesized as a biological and water quality assessment of aquatic life and recreational use support status. The assessment of the mainstem is directly comparable to that accomplished previously in 1992 and 2014 by Ohio EPA and 2011, 2013, and 2016 by MBI, such that trends in status can be examined, and causes and sources of impairment can be confirmed, appended, or removed. This study includes an assessment of chemical and physical stressors related to the biological assemblages. It is not the purpose of this study to identify specific remedial actions on a site specific or watershed basis. However, the data produced by this study contributes to the maintenance and use of the Integrated Prioritization System (IPS; MBI 2015) that was developed to determine and prioritize remedial projects for the MSDGC service area.

EXECUTIVE SUMMARY

Scope and Purpose

In 2010, MSDGC and MBI developed a four-year rotational watershed assessment approach that is documented in the *Watershed Monitoring and Bioassessment Plan for the MSD Greater Cincinnati Service Area, Hamilton County, Ohio; Technical Report MBI/5-11-3* (MBI 2011). Initiated in 2011, it has provided biological and water quality monitoring data that has assisted MSDGC in better understanding current water quality, trends through time, and considerations for its capital planning and implementation of Project Groundwork to further improve water quality. The 2021 bioassessment of Mill Creek is the second round of the follow-up sampling and analysis that is now being conducted primarily in support of the instream monitoring requirement of the CSO NPDES permit. The sampling and analysis in 2021 were performed by Level 3 Qualified Data Collectors and under a full biological, habitat, and chemical water quality Project Study Plan approved by Ohio EPA under the Ohio Credible Data Law and Regulations.

An intensive pollution survey design that employed a high density of sampling sites and biological, chemical, and physical indicators and parameters was followed. The principal objectives of biological assessments are to assess current conditions, verify existing aquatic life and recreational use designations, assign uses to unlisted streams and stream segments, make recommendations for any changes to use designations, report attainment status following the Ohio WQS and Ohio EPA practices, and determine associated causes and sources of impairment. The determination of associated causes and sources of impairments to aquatic life and recreational uses followed practices similar to those employed by Ohio EPA. As such, these determinations are usually categorical, but can include the identification of specific pollutants. The results of this study will be incorporated in an ongoing assessment of stressors and their root causes and sources throughout the MSDGC service area via the Integrated Prioritization System (IPS; MBI 2015). The IPS includes more detailed analyses of regional patterns in stressors by relating them to the chemical, physical, and biological data generated by the surveys to ancillary data available in GIS coverages.

Highlighted Findings

General Conditions in Mill Creek

The 2021 assessment of Mill Creek provided an opportunity to gauge the effectiveness of past and ongoing attempts to improve water quality and overall conditions by comparing the results to prior assessments. The 2011, 2013, and 2016 (fish/habitat only) by MBI and the 1992, 1997, and 2014 surveys by Ohio EPA provide the most consistent basis for comparisons in terms of spatial coverage and between indicators and parameters for the Mill Creek mainstem. Highlights of these comparisons include:

• The 2021 Mill Creek results show that the biological assemblages continue to recover incrementally. Most of the sites that were rated as poor or very poor in 1992 and fair to

- marginally good in 2011, and fair to good in 2016 were further improved to fair, good, and in a few instances exceptional quality for macroinvertebrates in 2021;
- Of the 41 sites that were evaluated under the Warmwater Habitat (WWH) suite of uses and biocriteria, 12 were in full attainment of the applicable use tier (WWH-4; MWH-8), 18 in partial attainment (WWH-17; MWH-1), with the remaining 11 in non-attainment (WWH-7; MWH-4);
- Of the total of 44 sites that were evaluated, three (3) were classified as Primary
 Headwater Habitat (PHWH) class 2 (1 site) and 3B (2 sites) the latter being the highest
 quality PHWH classification. The uppermost sites in Cooper Creek were evaluated against
 the existing WWH use biocriteria, but some site could be classified PHWH Class 3B
 pending the outcome of planned restoration to provide improved habitat in the form of
 deeper pools;
- Of the partially attaining sites, the fish assemblage was the limiting determinant as the macroinvertebrate assemblage met the ICI biocriterion at all these sites;
- Based on the results of the continuous monitoring of D.O. and temperature, the overriding influence of the concrete channel beginning at RM 6.9 and the downstream
 channelized reach of Mill Creek was evident. From this point downstream, diel D.O.
 swings were extremely wide, and temperatures were elevated above the average and
 maximum Ohio water quality criteria. The feasibility of restoration aside, the controlling
 factor is the highly modified habitat that exacerbates water quality effects;
- The longitudinal patterns in conductivity, total dissolved solids (TDS), chlorides, nitrate, and total phosphorus continue to clearly point to the Butler Co. Upper Mill Creek Water Reclamation Facility (WRF) as the principal source of elevated levels of these parameters in the East Fork and downstream into Mill Creek extending to the MWH reach at RM 6.9;
- Two (2) of the non-attaining sites were in Lick Run which failed to meet the WWH
 biocriteria being a newly daylighted channel that is not directly connected to Mill Creek
 and with a substrate covered in dense mats of filamentous algae. Lick Run is currently
 undesignated and no recommendation for an aquatic life or recreational use will be made
 at this time;
- The 2021 Mill Creek and East Fork Mill Creek results are a modest improvement over 2016 and are a distinct improvement over 2011 when 11 of 28 sites were in non-attainment and only four (4) in full attainment of the MWH use no WWH sites fully attained in 2011. Full attainment was observed in nearly all of the MWH reach of lower Mill Creek;
- The improvements in the biological assemblages since 1992 are due mostly to reductions in chemical pollutant loadings resulting from the collection and treatment of wastewater and the clean-up of toxic materials handling adjacent to Mill Creek. In the 26 miles of the mainstem, full attainment increased from 0.1 mile in 1992 to 10.8 miles in 2016 and non-attainment declined from 24.4 miles in 1992 to 5.8 miles in 2016 and 5.1 miles in 2021. While reaches of partial and isolated sites in non-attainment remained in 2021, the results indicate continued incremental improvement since the 2011 and 2016 surveys;
- Recreational uses continued to exhibit widespread impairment based on *E. coli* results.
 Although *E. coli* values were reduced compared to 2011 and 2016, no site fully attained the Primary Contact Recreation (PCR) use criteria.

Aquatic Life Use Attainment Status

The key indicator of overall condition in terms of aquatic life is the status of the aquatic life use designations based on attainment of the Ohio biological criteria. The status of these uses is portrayed as full, partial, or non-attainment in Table 1. Additionally, of the 44 sites that were assessed in the 2021 Mill Creek assessment, 28 sites were evaluated against the Warmwater Habitat (WWH) use, 13 were evaluated against the Modified Warmwater Habitat (MWH) use, and three (3) via the PHWH classification scheme. There are no recommended use changes for any of the existing use designations as they were addressed in prior years of assessment. Out of 44 sites sampled in 2021, 12 were in full attainment, 18 in partial attainment, and 14 in nonattainment of WWH or MWH. Of the latter, two were in Lick Run and four were in the mainstem of Mill Creek. The partially attaining sites were all limited by the fish assemblage failing to meet the biocriteria for the IBI and/or the MIwb. Three (3) sites were each evaluated with the PHWH protocol with one as a PWHW Class 2 and the remaining two (2) as PHWH Class 3B. Seven (7) sites were sampled and assessed for aquatic life use in the Cooper Creek subwatershed in cooperation with the Hamilton Co. SWCD (Table 1). Of the sites sampled in 2021, two (2) were in full attainment of WWH, one (1) in partial attainment of WWH, and four (4) in the headwaters that were in non-attainment of the existing WWH use. The attainment of WWH at two (2) of the lower Cooper Creek sites was a marked improvement over prior results in 2011 which reflected non-attainment and a poor-quality fish assemblage (MBI 2012).

Recreational Use Status

Impairment of the Primary Contact Recreation (PCR) recreational use in Mill Creek was pervasive in 2021. The PCR 30-day geometric mean criterion for *E. coli* was exceeded at 36 of the 44 sites. The geometric mean is the primary criterion used to determine recreational use support for streams and rivers. The high minimum values greater than the geometric mean criterion observed in 2011 and 2016 illustrated the chronic nature of the impairment and underscored the high frequency of exceedances observed throughout Mill Creek. This continued in 2021, but very high maximum values resulted in average counts greatly exceeding the PCR 30-day geometric mean on a frequent basis (Table 2).

Causes and Sources of Non-attainment

The determination of causes and sources of aquatic life use impairment was accomplished by associating the occurrence of sampling results that exceeded various chemical and physical thresholds that are known to adversely affect aquatic organisms. These categorizations are in some cases categorical (e.g., habitat alterations) and may include multiple specific types of effects and mechanisms. Others are parameter specific (e.g., dissolved oxygen) since the data are collected at that level. Yet others are at the categorical level (e.g., nutrients, toxics) which may include multiple parameters. In addition, some parameters can be proxies for a wider range of specific causes. The causes and sources that are listed along with the biological impairments appear in the aquatic life use attainment status (Table 1). New in 2021 is the weighting of causes in accordance with the severity of exceedances of stressor thresholds developed by the IPS framework in 2015 (MBI 2015). This approach provides a way to

Table 1. Aquatic life use attainment status in the 2021 Mill Creek study area with associated causes of impairment listed for sites in partial and non-attainment and weighted by severity of threshold exceedances. Threat factors are listed for fully attaining sites. Existing and recommended uses are listed for mainstem reaches and tributaries. A glossary of causal terms is listed at the bottom of the table.

		Drain-			1	1				T			1
	River Mile	age Area	Aquatic				Aq. Life						
Site ID	Fish/Macros		Life Use	IRI	Mlwh	ıcı	Status	QHEI	Location	Very Poor	Poor	Fair	Threats
Site is	te ID Fish/Macros (sq. mi.) Life Use IBI MIwb ICI Status QHEI Location Very Poor Poor Fair Threats Mill Creek (WWH Existing)												
MC00	26.40/26.00	4.43	WWH	43	NA	44	FULL	69.0	dst. Liberty-Fairfield Rd.	Creek (111111 Existing)			TDS; BOD; Zinc(7.0); Chloride; Cond;
MC12	19.22/19.10	26.70	WWH	30*		42	Partial	69.3	ust. Windisch Rd.	H. Urb (Cat); H. Urb (Buff);	Zinc(15.8);	Chloride; TDS; Org. Enrich., Min. D.O.	
	•										Chloride; Zinc; TP; Max D.O.; Diel		
MC10	18.86/18.70	27.00	WWH	28*	6.22*	44	Partial	70.5	Ust. Crescentville Rd.	H. Urb (Cat); H. Urb (Buff); QHEI Poor Attr.	D.O.; TP	TDS; Cond; Min. D.O	
MC08	18.37/18.10	27.30	wwn	34*	6.57*	44	Partial	83.5	ust. 200 m of E.Fk Mill Creek	H. Urb (Cat); H. Urb (Buff);	Chloride; TDS; Zinc(12.0); Diel D.O.;	TKN; Cond; BOD; Max.&Min. D.O.	
MC101	17.96/1.30	42.20	WWH		6.41*			65.0	RR trestel dst. East Fork Mill Creek	Chloride; TDS; Cond; TP	Nitrate; Zinc(34.6); TKN	Channel; QHEI Good Attr.	
WICTOI	17.50/1.50	42.20	******	31	0.41	10	Turciui	03.0	The treater data Edat Fork William Greek	Chloride; TDS; TP; Cond; H.Urb(Cat);	Nitrate; Zinc(27.4); QHEI Poor Attr.;		
MC06	16.73/16.60	50.50	WWH	<u>22</u> *	<u>5.09</u> *	40	NON	56.0	ust. E. Sharon Rd.	H.Urb(Buff); QHEI Poor Attr.	TKN	QHEI; QHEI Ratio; Channel; TKN;	
14604	45 44 /4 4 00	64.20	140401	24*	2.74*	40	NON	50.5	det. Cleardele Milford Frankler	Chloride; TDS; Cond; H.Urb(Cat) H.Urb(Buff);	Zinc(30.6); QHEI Good& Poor Attr.;	QHEI; Substr; Channel; TKN; Nitrate; QHEI	
MC04 MC11	15.41/14.80 13.96/13.90	61.30 68.80	WWH WWH	24* 35*		40	NON Partial	50.5 65.5	dst. Glendale Milford ExpWay ust. Barrett Paving	Chloride; TDS; H. Urb (Cat); H. Urb (Buff); TP	TKN; SSC Cond; Zinc(22.3); TP	Ratio; Org. Enrich. TKN; Nitrate; BOD; Max. D.O.; Nitrate	
IVICII	13.90/13.90	00.00	VVVVII	33	7.06	40	Partial	05.5	ust. Barrett Pavilig	Chloride, 105, A. Orb (Cat), A. Orb (Burr), TP	Cond; Zinc(28.6); Max. D.O.; TKN:	TKN, Nitrate, BOD, Max. D.O., Nitrate	
MC104	13.76/13.70	71.60	wwn	36 ^{ns}	6.57*	46	Partial	75.8	immediately dst. SSO 700 outfall	Chloride; TDS;	TP	Nitrate; BOD; Nitrate	
											Cond; Zinc(23.4); QHEI Good &		
MC02	13.27/13.10	72.30	WWH		5.92*	46		55.5	dst. W. Columbia Rd./ Koening Park	Chloride; TDS; H. Urb (Cat); H. Urb (Buff);	Poor; TKN; TP	QHEI; Channel; Nitrate; Max. D.O.	
MC01	11.70/11.30	73.90	WWH	39 ^{ns}	7.19*	42			dst. E. Galbraith Rd.	Chloride; TDS; H. Urb (Cat); H. Urb (Buff);	Cond; Zinc(23.7); TKN; TP	Nitrate	
MC80	10.48/10.45	115.00	WWH	37 ^{ns}		36	Partial	78.3	dst. Anthony Wayne Ave.	H. Urb (Cat); H. Urb (Buff);	Chloride; TDS; Zinc(19.5);	TKN; Cond.	
MC105	9.24/9.24	119.00	WWH		7.84 ^{ns}	38	FULL	71.8	dst. Congress Run				Chloride; TDS; Cond; Zinc(13.5); TKN;
MC79	8.63/8.65	120.00	WWH	35*	8.09 ^{ns}	40	Partial	75.5	dst. Este Ave.	TDS; H. Urb (Cat); H. Urb (Buff);	Chloride; Cond; Zinc(20.7); TP	TKN; BOD	
NACZZ	7.47/7.45	126.00	wwn	40	6.88*	20	Partial	FF 0	RR trestle Winton Place/ dst. Center Hill Ave.	TDC: 11 11-b (C-b), 11 11-b (D.:ff).	Chloride; Cond; Zinc(14.8); QHEI Good&Poor QHEI Ratio	OUT OUT Betiev Character TVN	
MC77	7.47/7.45	126.00	WWH	40	0.88	38	Partial	55.0	•	TDS; H. Urb (Cat); H. Urb (Buff); Creek (MWH Exisiting)	Good&Poor QHEI Ratio	QHEI; QHEI Ratio; Channel; TKN	
									IVIII				
MC09	6.80/6.80	128.00	MWH	30	<u>3.84</u> *	24	NON	28.5	dst. CSX RR Bridge	QHEI; Chloride; TDS; H. Urb (Cat); H. Urb (Buff);	QHEI; BOD; Cond; Zinc(13.7);	Substr; Channel; QHEI Good Attr.	
	0 1-10 0-				2 224	4 O.W				TDS; H. Urb (Cat); H. Urb (Buff); Min. & Max.	QHEI; Chloride; Cond; Zinc(11.8);		
MC07	6.45/6.35	135.00	MWH	28	<u>3.69</u> *	16*	NON	38.5	Dst. Spring Grove Ave.	D.O.	Dile D.O.'TP	QHEI Good Attr.; Substr; Channel; BOD	TDS; H. Urb (Cat); H. Urb (Buff); Chloride; Cond;
MC75	4.84/5.10	139.00	MWH	31	6.53	28	FULL	49.0	adj. Salway Park				Zinc(16.2); QHEI; Substr; Channel;
									,				TDS; H. Urb (Cat); H. Urb (Buff); Chloride; Cond;
MC74	4.21/4.30	141.00	MWH	38	6.98	28	FULL	62.0	ust. S. Ludlow Ave.				Zinc(13.2); TKN;
													TDS; H. Urb (Cat); H. Urb (Buff); Chloride; Cond; Zinc(17.5); Chloride; Cond; Zinc(17.5); QHEI;
MC73	3.45/3.50	144.00	MWH	34	6.34	44	FULL	58.5	ust. Mill Creek Rd.				Channel; TKN;
													Chloride; TDS; H. Urb (Cat); H. Urb (Buff);Cond;
MC72	3.15/3.10	154.00	MWH	36	7.26	36	FULL	58.5	dst. Mill Creek Rd.				Zinc(13.1); QHEI; Channel;
MC05	2.50/2.50	156.00	MWH	34	6.69	36	FULL	53.0	dst. Hopple St.				TDS; H. Urb (Cat); H. Urb (Buff); Chloride; Cond; Zinc(13.8); QHEI; Channel; TKN;
MC03	1.69/1.70	163.00	MWH	34	9.27	20*	Partial	57.5	dst. Lick Run CSO	H. Urb (Cat); H. Urb (Buff);	Chloride; TDS; Cond; Zinc(23.1);	QHEI; Good Attr.; QHEI Ratio; Channel	3
MC71	0.83/0.65	164.00	MWH	34	8.16		FULL	49.0	ust. Gest St.		, , , , , , , = 1		H. Urb (Cat); H. Urb (Buff); Chloride; TDS; Cond;
IVIC/1	0.03/0.05	104.00	IVIVVII	54	0.10		FULL	49.0	עטני טפטנ טני				Zinc(22.1); QHEI; Substr; Channel;
MC70	0.50/0.30	164.00	MWH	30	7.72		FULL	50.0	dst. Gest St.				H. Urb (Cat); H. Urb (Buff); Zinc(15.5); QHEI; Substr; Channel; TDS;
14666	0.24/0.42	164.00	B 414//	20	C 47		F	50.5	DD together Overseents				H. Urb (Cat); H. Urb (Buff); Zinc(14.9); QHEI;
MC69	0.21/0.10	164.00	MWH	28	6.47		FULL	50.5	RR trestle-Queensgate				Substr; Channel;

Table 1. continued.

River Mile age Area Aquatic Fish/Macros (sq. mi.) Life Use B Mwb Life Use Status HE Location West Fork Mill Creek (WWH Existing)								
MC45 0.20/0.20 36.50 WWH 26* 7.06* 30 NON 69.3 Elliot Ave. East Fork Mill Creek (WWH Existing)	ļ							
MC18 1.14/1.20 9.27 WWH 33* NA 42 Partial 71.5 Ust. Butler Co. Upper Mill Creek (WWT Pill (Cat); H. Un (Earl); H. Un (Earl								
MC18 1.14/1.20 9.27 WWH 33° NA 42 Partial 71.5 ust. Butler Co. Upper Mill Creek WWTP H. Uh (Cat); H. Uh (Buff); P. Uh (Cat); H.	West Fork Mill Creek (WWH Existing)							
MC18 1.14/1.20 9.27 WWH 33* NA 42 Partial 71.5 ust. Butler Co. Upper Mill Creek WWTP H. Urb (Cat); H. Urb								
MC15								
MC14								
MC14								
MC16 0.39/0.05 9.59 WWH 28* NA 36 Partial 60.5 dst. Fada Rd./ust. Confluence Mill Creek Urb (Buff); TP Zinc(38.5); TRN Channel; TRN; Org. Enrich; Nitrate Urb (Buff); TP Zinc(38.5); TRN Channel; TRN; Org. Enrich; Nitrate Urb (Buff); TP Zinc(38.5); TRN Channel; TRN; Org. Enrich; Nitrate Urb (Buff); TP Zinc(38.5); TRN Channel; TRN; Org. Enrich; Nitrate Urb (Buff); TP Zinc(38.5); TRN Channel; TRN; Org. Enrich; Nitrate Urb (Buff); TP Zinc(38.5); TRN Channel; TRN; Org. Enrich; Nitrate Urb (Buff); TP Zinc(38.5); TRN Channel; TRN; Org. Enrich; Nitrate Urb (Buff); TP Zinc(38.5); TRN Channel; TRN; Org. Enrich; Nitrate Urb (Buff); TP Zinc(38.5); TRN Channel; TRN; Org. Enrich; Nitrate Urb (Buff); TP Zinc(38.5); TRN Channel; TRN; Org. Enrich; Nitrate Urb (Buff); TP Zinc(38.5); TRN Channel; TRN; Org. Enrich; Nitrate Urb (Buff); TP Zinc(38.5); TRN Channel; TRN; Org. Enrich; Nitrate Urb (Buff); TP Zinc(38.5); TRN Channel; TRN; TDS; Org. Inc(32.7); Org. Inc(3								
MC111 3.57/3.57 0.34 WWH 28* NA VP* NON 48.5 Bechtold Park, approx 350-ft below origin H. Urb (Cat); H. Urb (Buff); Hyd. Alt. Chloride; Nitrate; Zinc(15.7); QHEI; TKN; TDS; Cond; MC112 3.42/3.42 0.48 WWH 28* NA F* NON 42.5 Approx 300-ft above Plainfield Road Chloride; H. Urb (Cat); H. Urb (Buff); Hyd. Alt. BOD; TDS; Zinc(32.7); QHEI; TKN; TDS; Cond; MC113 2.84/2.84 1.10 WWH 30* NA VP* NON 42.5 Approx 300-ft above Plainfield Road Chloride; H. Urb (Cat); H. Urb (Buff); Hyd. Alt. Chloride; TDS; Nitrate; Zinc(17.9) QHEI; Channel; TKN; Cond; MC12 2.59/2.55 1.80 WWH 30* NA VP* NON 49.5 Approx 450-ft below RT 126 culvert PH; H. Urb (Cat); H. Urb (Buff); Hyd. Alt. Chloride; Zinc(11.2); QHEI; Channel; TKN; TDS; Cond; MWH 32* NA MG Partial 61.3 Approx 450-ft below RT 126 culvert PH; H. Urb (Cat); H. Urb (Buff); Hyd. Alt. DTS; Zinc(13.3); TN; Chloride; Cond; MC118 1.58/1.58 3.99 WWH 46 NA G FULL 81.5 end of N. Kathwood Cir. Wth. (Cat); H. Urb (Buff); Hyd. Alt. DTS; Zinc(13.3); TN; Chloride; Cond; Chloride; Zinc(7.6); MC119 0.44/0.46 5.43 WWH 46 NA G FULL 88.5 ust. Reading Rd. Chloride; TDS; Zinc(11.2); Urb (Buff); Hyd. Alt. DTS; Zinc(11.2); U								
MC112 3.42/3.42 0.48 WWH 28* NA F* NON 42.5 Approx 300-ft above Plainfield Road Chloride;H. Urb (Lat);H. Urb								
MC113 2.84/2.84 1.10 WWH 30* NA VP* NON 47.5 Below Wecklow Avenue TKN;H. Urb (Cat); H. Urb (Buff); Hyd. Alt. Chloride; TDS; Nitrate; Zinc(71.9) QHEI; Channel; BOD; TAmm; Cond; MC32 2.59/2.55 1.80 WWH 30* NA VP* NON 49.5 Approx 1,500-ft above RT 126 culvert pH; H. Urb (Cat); H. Urb (Buff); Hyd. Alt. Chloride; Zinc(11.2); QHEI; Channel; TKN; TDS; MC28 2.13/2.20 2.60 WWH 32* NA MG Partial 61.3 Approx 450-ft below RT 126 culvert H. Urb (Cat); H. Urb (Buff); Hyd. Alt. TDS; Zinc(13.3); TKN; Chloride; Cond; MC118 1.58/1.58 3.99 WWH 46 NA G FULL 81.5 end of N. Kathwood Cir. Chloride; TDS; Zinc(11.2); Chloride; Cond; MC119 0.44/0.46 5.43 WWH 46 NA G FULL 88.5 ust. Reading Rd. MC114 0.55/0.55 0.49 WWH 12* NA VP* NON 45.5 Between Langhorst Ct. and Jeffrey Ct. H. Urb (Cat); H. Urb (Buff); Hyd. Alt. BOD; Zinc(18.2) QHEI; Good Attr; Channel; TKN; Chloride; MC11-2); Chloride; BOD; TDS; Zinc(8.0 Cond; MC109 1.11/1.00 0.91 PHW3A Secommended) MC37 1.49/1.40 0.84 PHW3A PHW3A PHW3A PHW3A PHW3A PHW3A PHW3A PHW3A PHW3A Recommended) H. Urb (Cat); Chloride; BOD; TDS; Zinc(8.0 Cond; PHW3A Recommended) H. Urb (Cat); Chloride; BOD; TDS; Zinc(8.0 Cond; PHW3A Recommended) H. Urb (Cat); Chloride; BOD; TDS; Zinc(8.0 Cond; PHW3A Recommended)								
MC32 2.59/2.55 1.80 WWH 30* NA VP* NON 49.5 Approx 1,500-ft above RT 126 culvert pH; H. Urb (Cat); H. Urb (Buff); Hyd. Alt. Chloride; Zinc(11.2); QHEI; Channel; TKN; TDS; MC18 2.13/2.20 2.60 WWH 32* NA MG Partial 61.3 Approx 450-ft below RT 126 culvert H. Urb (Cat); H. Urb (Buff); Hyd. Alt. TDS; Zinc(13.3); TKN; Chloride; Cond; Chloride; Zinc(7.6); MC18 1.58/1.58 3.99 WWH 46 NA G FULL 81.5 end of N. Kathwood Cir. Chloride; TDS; Zinc(11.2); Unnamed Tributary to Cooper Creek (Rossmoyne Creek) @RM 2.80 (WWH Existing) MC114 0.55/0.55 0.49 WWH 12* NA VP* NON 45.5 Between Langhorst Ct. and Jeffrey Ct. H. Urb (Cat); H. Urb (Buff); Hyd. Alt. BOD; Zinc(18.2) QHEI; Good Attr.; Channel; TKN; Chloride; MC109 1.11/1.00 0.91 PHW3A Secommended) MC109 1.11/1.00 0.84 PHW3A PHW3								
MC28 2.13/2.20 2.60 WWH 32* NA MG Partial 61.3 Approx 450-ft below RT 126 culvert H. Urb (Cat); H. Urb (Buff); Hyd. Alt. TDS; Zinc(13.3); TKN; Chloride; Cond; Chloride; Zinc(7.6); MC118 1.58/1.58 3.99 WWH 46 NA G FULL 81.5 end of N. Kathwood Cir. Chloride; TDS; Zinc(11.2); Unnamed Tributary to Cooper Creek (Rossmoyne Creek) @RM 2.80 (WWH Existing) MC114 0.55/0.55 0.49 WWH 12* NA YP* NON 45.5 Between Langhorst Ct. and Jeffrey Ct. H. Urb (Cat); H. Urb (Buff); Hyd. Alt. BOD; Zinc(18.2) QHEI; Good Attr.; Channel; TKN; Chloride; BOD; TDS; Zinc(8.0 Cond; MC109 1.11/1.00 0.91 PHW3A Second Condition of the Condition								
MC118 1.58/1.58 3.99 WWH 46 NA G FULL 81.5 end of N. Kathwood Cir. MC119 0.44/0.46 5.43 WWH 46 NA G FULL 88.5 ust. Reading Rd. MC114 0.55/0.55 0.49 WWH 12* NA VP* NON 45.5 Between Langhorst Ct. and Jeffrey Ct. MC119 1.11/1.00 0.91 PHW3A Secommended) MC109 1.11/1.00 0.91 PHW3A Secommended MC109 1.49/1.40 0.84 PHW3A Recommended MC109 1.49/1.40 0.84 PHW3A Recommended MC118 1.58/1.58 3.99 WWH 46 NA G FULL 81.5 end of N. Kathwood Cir. Unnamed Tributary to Cooper Creek (Rossmoyne Creek) @RM 2.80 (WWH Existing) White Management of Chloride; Tinc(17.6); Management of N. Kathwood Cir. White Management of N. Kathwood Cir. Unnamed Tributary to Cooper Creek (Rossmoyne Creek) @RM 2.80 (WWH Existing) White Management of N. Kathwood Cir. White Ma								
MC119 0.44/0.46 5.43 WWH 46 NA G FULL 88.5 ust. Reading Rd. MC114 0.55/0.55 0.49 WWH 12* NA VP* NON 45.5 Between Langhorst Ct. and Jeffrey Ct. H. Urb (Cat); H. Urb (Buff); Hyd. Alt. BOD; Zinc(18.2) QHEI;Good Attr.; Channel; TKN; Chloride; BOD; TDS; Zinc(8.0)								
MC114 0.55/0.55 0.49 WWH 12* NA VP* NON 45.5 Between Langhorst Ct. and Jeffrey Ct. H. Urb (Cat); H. Urb (Buff); Hyd. Alt. BOD; Zinc(18.2) QHEI;Good Attr.; Channel; TKN; Chloride; MC109 1.11/1.00 0.91 PHW3A								
MC114 0.55/0.55 0.49 WWH 12* NA VP* NON 45.5 Between Langhorst Ct. and Jeffrey Ct. H. Urb (Cat); H. Urb (Buff); Hyd. Alt. BOD; Zinc(18.2) QHEI;Good Attr.; Channel; TKN; Chloride; Kings Run (Undesignated; PHW3A Recommended) MC109 1.11/1.00 0.91 PHW3A								
MC109 1.11/1.00 0.91 PHW3A								
MC109 1.11/1.00 0.91 PHW3A 52.0 Along Wooden Shoe Hollow Ln. Unnamed Tributary to West Fork Creek @RM 1.24 (Undesignated; PHW3A Recommended) MC97 1.49/1.40 0.84 PHW3A								
MC109 1.11/1.00 0.91 PHW3A 52.0 Along Wooden Shoe Hollow Ln. Unnamed Tributary to West Fork Creek @RM 1.24 (Undesignated; PHW3A Recommended) MC97 1.49/1.40 0.84 PHW3A H. Urb (Cat); Chloride; BOD								
MC97 1 49/1 40 0 84 PHW34 69 5 Kirby Rd	QHEI; QHEI Ratio;							
M(9/ 1/49/1/40) (1/84 PHW34 1/49/1/40	, , , , , , , , , , , , , , , , , , , ,							
Channel; Cond;	OS; Zinc(9.2);							
Lick Run (Undesignated; No Recommendation)								
MC108 1.70/1.70 0.19 PHW2 Glenway Woods QHEI; Substr; Channel; TKN;	DD; TDS; Zinc(8.5);							
MC106 0.98/0.98 3.45 WWH 16* P NON 45.0 Grotto Court BOD Chloride; TDS; Zinc(8.8); Good Attr.; QHEI; Good & Poor Attr.; Channel; QHEI; Good & Poor Attr.; Channel;								
MC107 0.45/0.45 3.55 WWH 20* P NON 47.5 Queen City and Cora Ave. Zinc(14.1); QHEI; Good & Poor Attr.; QHEI Ratio; Chloride; BOD; TDS;								

Glossary of terms used in Table 1							
Acronym	Description	Acronym	Description	Acronym	Description		
H. Urban(Cat)	Urban land use HUC12	QHEI Ratio	Ratio of modified:good QHEI attributes	VSS	Volatile suspended solids		
H. Urban (Buff)	Urban land use 30 m buffer	Cond.	Specific conductance (conductivity)	Conduct	Specific conductivity		
Hyd. Alt.	Hydrological alteration	Org. Enrich.	Organic enrichment related to sewage	TKN	Total Kjeldahl nitrogen		
QHEI	Qualitative Habitat Evaluation Index (QHEI)	PAH	Polycyclic aromatic hydrocarbons	TP	Total phosphorus		
QHEI Poor Attr.	Number of modified QHEI attributes	TDS	Total dissolved solids	BOD	Biochemical oxygen demand		
QHEI Good Attr.	Number of goodd QHEI attributes	DO	Dissolved oxygen	Max.	Maximum		
Channel	Channel condition from QHEI	TSS	Total suspended solids				

Table 2. Recreational use attainment status at sites sampled in the 2021 Mill Creek study area. Minimum, mean, and maximum Escherichia coli bacteria counts are provided along with exceedances of the Ohio Primary Contact Recreation (PCR) 30-day geometric mean and statistical threshold value (STV) and the Secondary Contact (SC) maximum criterion.

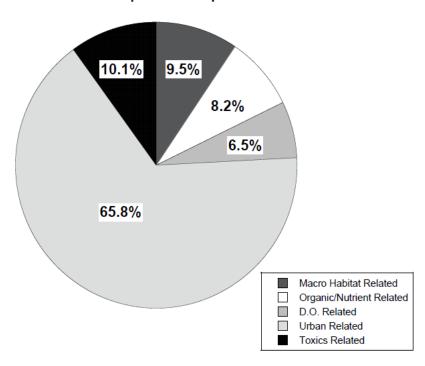
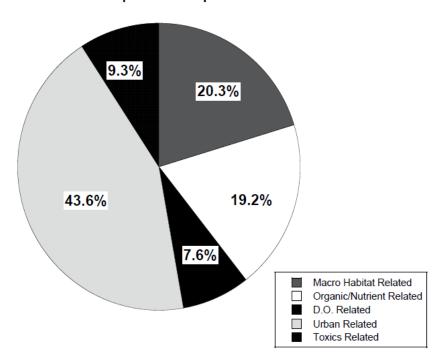

Drainage Geometric Maximum									
		Samples	Minimum		STV				
Site ID Mile (sq. mi.) Samples Minimum Mean STV Mill Creek									
26.4	4.43		173	487	866				
					7980				
					1046				
					1986				
					770				
16.73	50.5	6	205	410	649				
15.41	61.3	6	281	494	1300				
13.96	68.8	6	185	344	687				
13.76	71.6	6	99	841	111990				
13.27	72.3	6	214	890	86640				
11.7	73.9	6	236	478	1203				
10.48	115	6	157	935	10430				
9.24	119	6	99	468	1986				
8.63	120	6	96	398	10140				
7.47	126	6	99	346	1046				
6.8	128	6	96	255	488				
6.45	135	6	60	149	435				
4.84	139	6	228	1409	26130				
4.21	141	6	179	1164	29870				
3.45	144	6	131	740	30760				
3.15	154	6	172	610	1986				
2.5	156	6	162	748	2420				
1.69	163	6	162	919	22470				
0.83	164	6	101	850	32550				
0.5	164	6	16	334	54750				
0.21	164	6	28	186	24890				
East Fork Mill Creek									
1.14	9.27	5	27	359	1120				
0.96	9.3	5	33	96	461				
0.66	9.53	5	179	392	1553				
0.39	9.59	5	272	663	2420				
				<u> </u>	-•				
	15.41 13.96 13.76 13.27 11.7 10.48 9.24 8.63 7.47 6.8 6.45 4.84 4.21 3.45 3.15 2.5 1.69 0.83 0.5 0.21 1.14 0.96 0.66 0.39 Exceedance of Printexceedance of Printexc	River Mile Area (sq. mi.) 26.4 4.43 19.22 26.7 18.86 27 18.37 27.3 17.96 42.2 16.73 50.5 15.41 61.3 13.96 68.8 13.76 71.6 13.27 72.3 11.7 73.9 10.48 115 9.24 119 8.63 120 7.47 126 6.8 128 6.45 135 4.84 139 4.21 141 3.45 144 3.15 154 2.5 156 1.69 163 0.83 164 0.5 164 0.21 164 Exceedance of Primary Contact Recreence Exceedance Of Primary Co	River Mile Area (sq. mi.) Samples Mill Creek 26.4 4.43 4 19.22 26.7 5 18.86 27 5 18.37 27.3 5 17.96 42.2 6 16.73 50.5 6 15.41 61.3 6 13.96 68.8 6 13.76 71.6 6 13.27 72.3 6 11.7 73.9 6 10.48 115 6 9.24 119 6 8.63 120 6 7.47 126 6 6.8 128 6 6.45 135 6 4.84 139 6 4.84 139 6 4.84 139 6 4.84 139 6 4.84 139 6 4.21 141 6	River Mile Area (sq. mi.) Samples Minimum Mill Creek 26.4 4.43 4 173 19.22 26.7 5 72 18.86 27 5 109 18.37 27.3 5 81 17.96 42.2 6 225 16.73 50.5 6 205 15.41 61.3 6 281 13.96 68.8 6 185 13.76 71.6 6 99 13.27 72.3 6 214 11.7 73.9 6 236 10.48 115 6 157 9.24 119 6 99 8.63 120 6 96 7.47 126 6 99 8.63 128 6 96 6.45 135 6 60 4.84 139 6 228	River Mile Area (sq. mi.) Samples Minimum Geometric Mean Mill Creek 26.4 4.43 4 173 487 19.22 26.7 5 72 595 18.86 27 5 109 325 18.37 27.3 5 81 396 17.96 42.2 6 225 366 16.73 50.5 6 205 410 15.41 61.3 6 281 494 13.96 68.8 6 185 344 13.76 71.6 6 99 841 13.27 72.3 6 214 890 11.7 73.9 6 236 478 10.48 115 6 157 935 9.24 119 6 99 346 8.63 120 6 96 398 7.47 126 6 99				

Table 2. continued										
Cooper Creek (Rossmoyne Creek)										
MC111 (MR-1)	3.57 0.34 4 866 1587 309									
MC112 (MR-2)	3.42	0.48	4	613	3962	68670				
MC113 (MR-3) 2.84 1.1 4 687 1147						3150				
MC32 (MR-5)	MC32 (MR-5) 2.59 1.8 4 194 395 921									
MC28 (MR-6) 2.13 2.6 4 70 389 1300										
MC118	1.58	3.99	4	770	2235	12810				
MC119	0.44	5.43	4	236	1880	13540				
Unnamed Tributary to Cooper Creek (Rossmoyne Creek) @RM 2.80										
MC114 (MR-4b)	0.55	0.49	4	1414	2055	2980				
Kings Run										
MC109 1.11 0.91 4 291 1260 6830										
Unnamed Tributary to West Fork Creek @RM 1.24										
MC97 1.49 0.84 4 291 884 8840										
Lick Run										
MC108	1.7	0.19	4	238	591	4100				
MC106	0.98	3.45	4	96	322	5480				
MC107	0.45	3.55	4	192	509	1553				
	Exceedance of Pri	mary Contact Recre	ation 30 day geome	etric mean of 126 cf	u/100 mL.					
		· ·		reshold Value (STV	·					
	Exceedance of Secondary Contact Recreation maximum of 1030 cfu/100 mL.									


determine which causes are the most limiting and which are of a lesser magnitude of effect. For fully attaining sites, threat factors were listed also in accordance with the IPS framework derived from the susceptibility/threat factors for each fully attaining site.

Weighted and unweighted causes for the 2021 Mill Creek mainstem for partial and non-attaining sites are portrayed in Figure 1 by major subcategories. Urban land use and chemical related stressors (chlorides, TDS, conductivity) ranked first in both the weighted and unweighted rankings, with a higher proportion for weighted causes at 65.8% vs. 43.6% for unweighted. Macro habitat and organic enrichment/nutrient related causes ranked second and third at 20.3% and 19.2% unweighted dropping to 9.5% and 8.2% as weighted causes. Toxics (and toxicity) and D.O. ranked fourth and fifth, respectively at 9.3% and 7.6% unweighted and 10.1% and 6.5% weighted. The predominance of urban related causes is the likely result of land uses in that category remaining constant, urban chemical related indicators increasing, and many of the other causes declining along with the decline in impaired sites compared to prior years.

Mill Creek Mainstem Major Causes (Weighted %) Associated with Aquatic Life Impairments in 2021

Mill Creek Mainstem Major Causes (Unweighted %) Associated with Aquatic Life Impairments in 2021

Figure 1. Weighted and unweighted causes associated with impairment of aquatic life in the Mill Creek mainstem study area in 2021. Major subcategories of causes are derived from the causes listed in Table 1.

Trajectories in Key Indicators

Developing an understanding of the trajectory of the different indicators and parameters that are provided by a spatially adequate monitoring design provides important feedback to MSDGC, Ohio EPA, and stakeholders in the Mill Creek watershed. Given that Mill Creek has a complex mosaic of numerous watershed level and site-specific impacts, the complexity of being able to understand and then develop management responses to impairments is an immense challenge. The documentation of incremental improvements as opposed to as singular focus on the full restoration of impairments allows program effectiveness to receive credit short of full restoration. Furthermore, failing to recognize if waters are improving and are on a positive trajectory can lead to erroneous conclusions about the attainability of Clean Water Act (CWA) goals and the viability of restoration efforts. Simply put, a selective focus on individual and selected pollutants are insufficient in a complex setting like Mill Creek. It is for these reasons that being able to detect, measure, and express incremental improvements in key indicators is vital. The ability to show incremental progress not only provides confirmation that restoration efforts are working, but it also provides important feedback for those programs which must be adaptive in order to succeed. As such, the type of monitoring and assessment that was employed in this survey was designed to provide results that could be used to demonstrate the degree and direction of incremental change.

The results of the bioassessment, using the primary indices that comprise the Ohio biocriteria, were used to quantify the degree to which overall aquatic life conditions have improved through time up to and including the 2021 survey. The Area of Degradation (ADV) and Attainment (AAV) methodology (Yoder et al. 2005) was used to illustrate the degree of change between the Ohio EPA surveys of 1992, 1997, and 2014 and the 2011, 2013, 2016, and 2021 MBI surveys of the mainstem of Mill Creek. The ADV/AAV term is an expression of the degree to which one of the biological index values is either above or below the WWH biocriterion and the distance of the mainstem over which it occurs. As such it is a quantification of the "quantity" of biological attainment and impairment including the severity of degradation. When normalized to a standard distance (e.g., per mile) it can be an effective indicator of the degree of change which is taking place through time.

The change in ADV/AAV results for the fish Index of Biotic Integrity (IBI), the Modified Index of Well-Being (MIwb), and the macroinvertebrate Invertebrate Community Index (ICI) between 1992 and 2016 indicates a substantial and continuing improvement in biological condition (Figure 1). In 1992, the ADV was significantly larger than subsequent years and the AAV was zero for all three indices in 1992. In 2016, the AAV was positive for all three indices and the highest for the macroinvertebrate assemblage. In terms of the miles of attainment and non-attainment of the WWH and MWH designated uses in Mill Creek, full attainment was evident in portions of Mill Creek for the first time in 2016. While significant areas of degradation and non-attainment remain, these results indicate a significant incremental improvement in the Mill Creek mainstem which reflects the cumulative effects of pollution abatement efforts over the previous three decades. The 2021 results were comparable to 2016 with perhaps a slightly higher AAV for the fish indices (IBI and MIwb) and a virtual zero ADV for the ICI. The miles of

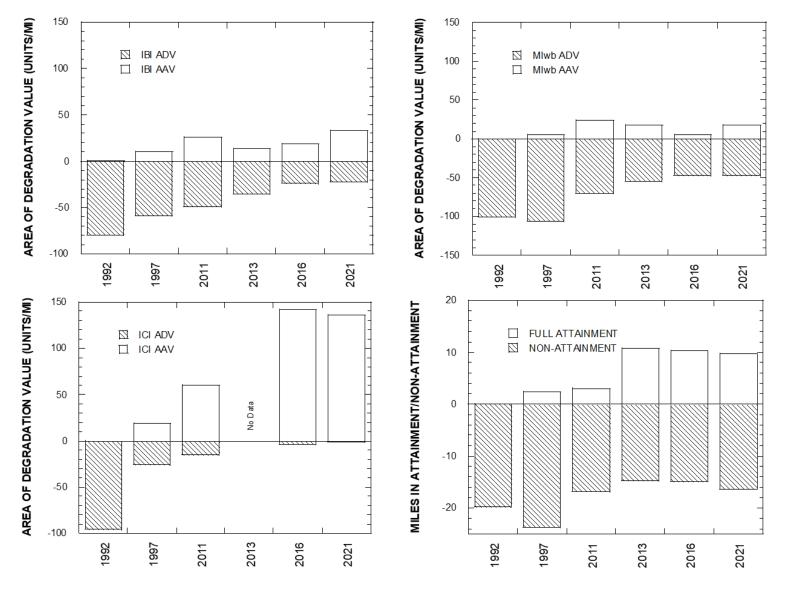


Figure 2. Area of Degradation (ADV) and Area of Attainment (AAV) values for the IBI (upper left), MIwb (upper right), and ICI (lower right) in the Mill Creek mainstem between 1992 and 2021. The miles of full and non-attainment between 1992 and 2021 are depicted in the lower right panel.

attainment declined and non-attainment increased slightly. If anything, the 2021 results show a lessening of the rate of recovery and a leveling off of miles in attainment and non-attainment.

Realizing further improvements will require additional reductions in pollution impacts and "subsidizing" the natural features of the Mill Creek watershed such as increasing the quality of stream habitat, removing barriers to fish, and improving the flow regime. Restoration and abatement actions and their design will need to incorporate these important factors and understand their important role in the eventual attainment of aquatic life designated uses in Mill Creek.

CONCLUSIONS and RECOMMENDATIONS

Mill Creek Watershed Designated Use Attainment Status

A principal objective of the MSDGC service area watershed bioassessment plan was to evaluate the existing aquatic life and recreational use designations and to recommend new uses for undesignated or unverified streams and changes to existing uses determined as a result of the series of 2011-14 baseline watershed assessments. Ohio EPA last reviewed the aquatic life and recreational designations in the Mill Creek watershed in the early 1990s when they completed their baseline survey (Ohio EPA 1994) and other localized surveys since that time (Ohio EPA 2016). Now, Ohio EPA has either adopted, or is in the process of adopting, the use designation recommendations from the 2011-18 MSDGC surveys. As such, that objective has been or will be largely satisfied. As a result, the MSDGC instream monitoring has shifted to a more focused series of assessments to document status, trends, and causes/sources of impairments related to pollution control efforts by Project Groundwork and related wet weather source control efforts by MSDGC. The 2016 Mill Creek assessment represented the first attempt at this more focused approach, with the 2021 survey serving as a follow-up assessment.

Aquatic life use attainment status was determined by comparing the biological index values derived from the fish and macroinvertebrate assemblages to the biological criteria in the Ohio Water Quality Standards (WQS; OAC 3745-1). The results of this process for each site in the 2021 Mill Creek study area are presented herein. In addition, the causes and sources that were most associated with observed impairments were also identified. The status of existing recreational uses was likewise assessed by determining the attainability of the applicable recreational use. Ohio EPA recognizes two major subcategories of recreational uses, Primary Contact Recreation (PCR) and Secondary Contact Recreation (SCR).

Aquatic Life Use Recommendations

The aquatic life uses in the Ohio Water Quality Standards (WQS) that are applicable to the 2021 study area are the basis for the aquatic life use attainment status in Table 1. There are no recommendations for aquatic life use changes based on the 2021 results, but three new PHWH streams were identified (Table 1). The results of the 2011 Mill Creek watershed assessments (MBI 2012, 2017) were used to recommend numerous changes that were adopted by the Ohio EPA via use designation rulemakings in 2016 that became effective on January 2, 2017. Additional recommendations based on the 2016 bioassessment will eventually be covered under future rulemakings.

Aquatic Life Use Attainment Status

The status of aquatic life uses in the 2021 Mill Creek study area was determined based on the verified and recommended use designations discussed previously and in accordance with Ohio EPA methods and practices. In addition to listing the status of each site, the weighted proximate causes are also indicated for all impaired sites (Table 1). A map of the aquatic life attainment status is depicted in Figure 3.

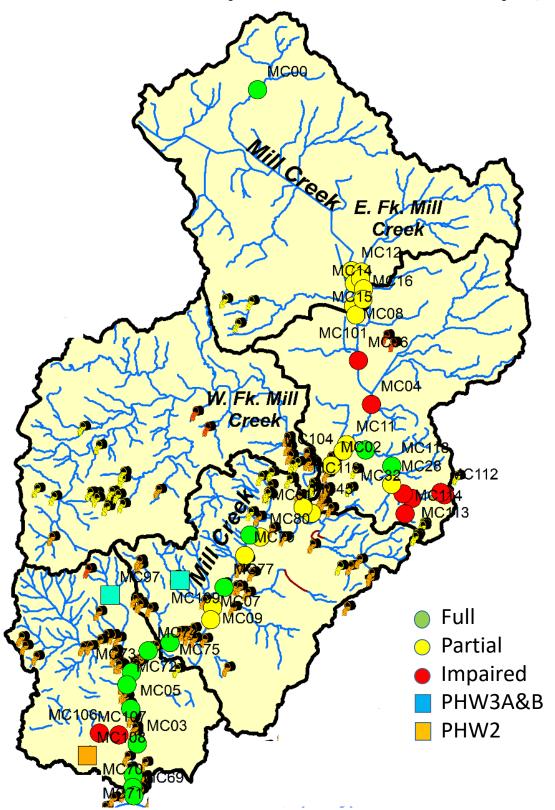
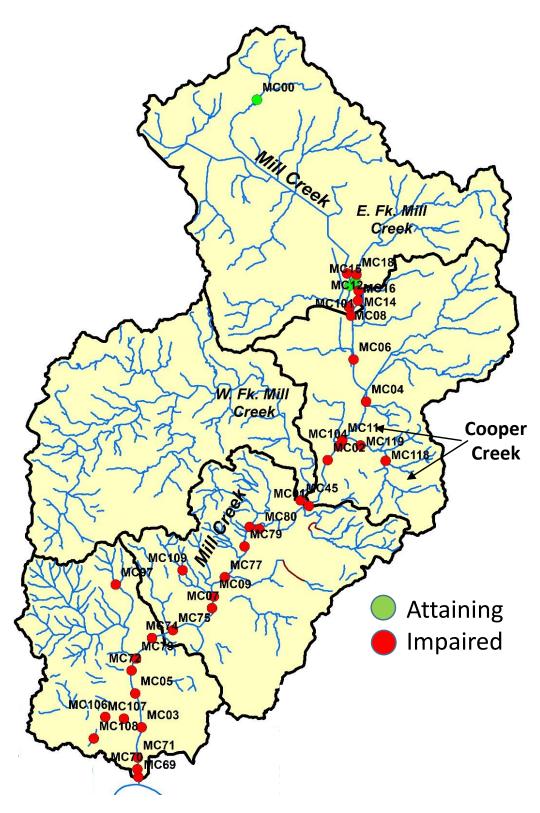


Figure 3. Aquatic life use attainment status for the Warmwater Habitat suite of use tiers in the Mill Creek study area during 2021. Green circles – full attainment of aquatic life use tier; yellow – partial attainment; red – non-attainment. Site codes correspond to those described in Tables 1 and 2. Sites recommended for classification as Primary Headwater Habitat (PHWH) appear with their classification results. Blue squares – PHWH Class 3A or B; orange squares PHWH Class 2.


Use attainment was expressed as full, partial, or non-attainment following Ohio EPA guidelines and practices. Of the 41 sites that were evaluated under the Warmwater Habitat suite of uses and biocriteria, 12 were in full attainment of the applicable use tier (WWH-4; MWH–8), 18 in partial attainment (WWH-17; MWH-1), and 11 were in non-attainment (WWH-7; MWH-4). Proximate causes were delineated for impaired sites (i.e., partial and non-attainment) and typified the urban setting being predominated by sedimentation, the effect of elevated nutrients, elevated urban parameters, habitat alterations, elevated PAH compounds, and occasional low D.O. values. The sources were mostly related to wet weather sources and hydromodification (Table 1).

Recreational Use Status

The status of recreational uses was based on the geometric mean of the *E. coli* results (Table 5) for the Primary Contact use and the maximum for the Secondary Contact use. Most of the sites in the 2021 study area are designated PCR with various Mill Creek tributaries as SCR. Impairment of recreation uses in the Mill Creek watershed was pervasive throughout all of the sampled subwatersheds. The Primary Contact 30-day (geometric mean) criterion was exceeded at 36 of 44 sites (Table 2). The geometric mean is the primary criterion used to determine recreational use support and the single sample maximum is typically only used to determine use support at public bathing beaches, but not for streams and rivers. Sites with minimum values greater than the geometric mean criterion underscored the high frequency of exceedances coded in yellow on Table 2. A map of the recreational attainment status is depicted in Figure 4.

Linking Impairments to Sources and Reductions in Pollution Required to Meet WQS

The IPS biological effect thresholds (MBI 2015) were used to assess all of the chemical parameters and habitat variables in addition to determining exceedances of water quality criteria. The IPS thresholds are portrayed as goals for each parameter that correspond to the attainment of the Ohio biological criteria for the tiered aquatic life uses (e.g., EWH, WWH, and MWH). The ambient results were color coded in accordance with the narrative benchmarks used in the IPS – exceptional (EWH), blue; good (WWH), green; fair (MWH), yellow; poor (LRW), orange; very poor (no use), red. The IPS thresholds for each parameter were listed alongside the ambient results to provide an assessment of where reductions in specific parameters and attributes are needed to resolve biological impairments. Exceedances of the IPS thresholds were extensive for chlorides, conductivity, TDS, sulfate, TKN, nitrate, total phosphorus, the Hydro QHEI, substrate, and channel condition. By contrast, exceedances of water quality criteria were sparse and limited to low D.O. and elevated temperature.

Figure 4. Map of recreational use attainment status for the Primary Contact Recreational use in the 2021 Mill Creek study area expressed as attainment (green) or nonattainment (red) based on E. coli values.

BIOLOGICAL AND WATER QUALITY STUDY OF MILL CREEK 2021

Introduction

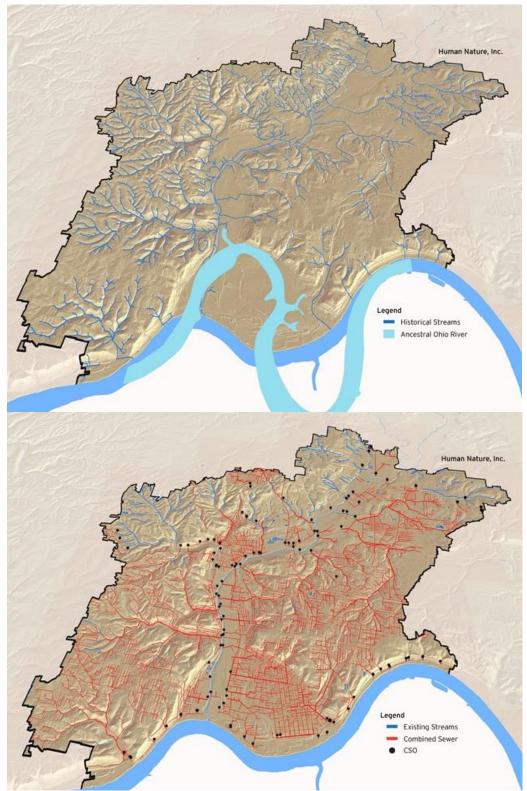
The 2021 Mill Creek biological and water quality assessment covered more than 60 CSOs and SSOs, one municipal WWTP, several industrial discharges, and numerous stormwater sources, providing the basis for documenting incremental changes against the previous 30 years of standardized monitoring of the Mill Creek mainstem and major tributaries by Ohio EPA and MSDGC. The spatial and temporal sampling design and the biological, chemical, and physical indicators and parameters that were collected at each sampling site are described in the Watershed Monitoring and Bioassessment Plan for the MSD Greater Cincinnati Service Area, Hamilton County, Ohio; Technical Report MBI/5-11-3 (MBI 2011). Biological sampling methods for fish and macroinvertebrate assemblages and habitat assessment are supported by chemical and physical measures and ancillary information about pollution sources and other stressors for the overall biological assessment. The assessment employed a targeted-intensive pollution survey design which documents changes in a longitudinal manner as the effects of multiple pollution sources accumulate in a downstream direction.

MSDGC intends to use the results and analysis of the monitoring and bioassessment program to accomplish the following:

- 1. Determine the status of service area rivers and streams in quantitative terms, i.e., not only if the waterbody is impaired but the spatial extent and severity of the impairment;
- 2. Determine the proximate stressors that contribute to the observed impairments for the purpose of targeting management actions at those stressors;
- 3. Evaluate the appropriateness of existing aquatic life and recreational use designations and make recommendations for any changes to those designations; and,
- 4. Continue the development of the Integrated Prioritization System (IPS; MBI 2015) for a variety of purposes. Among its many uses, the IPS will assist MSDGC in making decisions about how to prioritize and design pollution abatement projects and measure their effectiveness.

To meet these objectives, all data was generated by methods and implementation in conformance with the provisions of the Ohio Credible Data Law (ORC 6111.51). Under the regulations that govern the Credible Data program at Ohio EPA, data collection and analyses must be collected and performed under the direction of Level 3 Qualified Data Collectors (OAC 3745-4). MSDGC has used the data to evaluate the attainability of aquatic life and recreational uses and determine the status of their service area rivers and streams since 2011. As such, the sampling and analysis of the biological and physical condition conducted herein conforms to these provisions by the development and submittal of annual Level 3 Project Study Plans (PSP).

MSDGC Watershed Bioassessment Scope and Purpose


The MSDGC project study area consists of 11 subwatersheds and the Ohio River mainstem within Hamilton County and parts of adjoining counties. These watersheds are impacted by a variety of stressors including municipal and industrial point source discharges of wastewater, habitat modifications in the form of modified stream channels, run-of-river low head dams, riparian encroachment, channelization, and nonpoint source runoff from widely differing degrees of landscape modifications from rural to suburban to intensive urban development. The urban impact gradient is the strongest in Lower and Middle Mill Creek, lessening somewhat across the Little Miami and Great Miami River subwatersheds. Combined sewer overflows (CSOs) are the most numerous in Mill Creek and adjacent Little Miami River tributaries, and some have subsumed historical streams (Figure 5).

2021 Mill Creek Assessment Scope and Purpose

The 2021 Mill Creek assessment included the mainstem of Mill Creek, the lower E. Fork Mill Creek, and selected tributary locations that are part of the MSDGC service area watershed monitoring plan (MBI 2011). In addition to the baseline purposes of the MSDGC monitoring plan, specific assessment issues in Mill Creek include a high density of CSO and SSO outfalls, the extensively modified channel in lower Mill Creek, and pollution sources including direct discharges and runoff from industrial operations, urban stormwater, and permitted municipal point sources.

Cincinnati has the fifth highest volume of CSOs in the U.S. (MSDGC 2011a). As a result, water quality has been significantly impacted in the Mill Creek subwatershed. MSDGC is working to remediate these issues under a Consent Decree with the U.S. Dept. of Justice and U.S. EPA to reduce CSO volume by two (2) billion gallons by 2019. To resolve the public health and water quality issues, MSDGC has implemented Project Groundwork, a multi-year and multi-billion dollar initiative that includes hundreds of sewer improvements and stormwater control projects (MSDGC 2011b). The role of the watershed monitoring program is to support these initiatives by providing current information about baseline conditions, provide feedback about the effectiveness of new and past remediation efforts via trend assessment, and to assure that restoration resources are targeted to the actions and places that have the greatest return on investment. As such, the 2021 Mill Creek assessment is a continuation of that process.

The Mill Creek 2021 monitoring fulfills the MSDGC National Pollutant Discharge Elimination System (NPDES) CSO permit reporting requirements.

Figure 5. The historical occurrence of the Lower Mill Creek watershed (upper) and the current watershed (lower) showing the current MSDGC combined sewer system and the historical subjugation of natural streams (after MSDGC 2011b).

METHODS

Monitoring Design

An intensive pollution survey design that employs a high density of sampling sites and biological, chemical, and physical indicators and parameters was followed in 2021. The principal objectives of the biological assessment are to report aquatic life and recreational use attainment status, following the Ohio WQS and Ohio EPA practices, and determine associated causes and sources of impairment. To accomplish this, sites were positioned upstream and downstream from major discharges, sources of potential releases and contamination, and major physical modifications to provide a "pollution profile" along the Mill Creek mainstem. The result was a design that included chemical, physical, and biological sampling at a total of 44 sites in Mill Creek and selected tributaries. Each site was assigned a unique site code as depicted in Table 3 and Figure 2. Six (6) new sites were added in 2021 to better assess selected tributaries and a restoration site in Mill Creek.

Biological and Water Quality Surveys

A biological and water quality survey, or "biosurvey," is an interdisciplinary monitoring effort coordinated on a water body-specific or watershed scale. Biological, chemical, and physical monitoring and assessment techniques are employed in biosurveys to meet three major objectives:

- Determine the extent to which use designations assigned in the state Water Quality Standards (WQS) or equivalent policies or procedures are either attained or not attained;
- 2. Determine if use designations and/or goals set for or assigned to a given water body are appropriate and attainable; and,
- 3. Determine if any changes in key ambient biological, chemical, or physical indicators have taken place over time, particularly before and after the implementation of point source pollution controls or best management practices.

Measuring Incremental Changes

Incremental change is defined here to represent a measurable and technically defensible change in the condition of a water body within which it has been measured. Most commonly this is termed "incremental improvement" in which the condition of a water body that does not yet fully meet all applicable water quality standards (WQS) can be tracked as to the direction of any changes. The general principles of incremental change are defined as follows (after Yoder and Rankin 2008):

measurement of incremental change can be accomplished in different ways, provided
the measurement method is scientifically sound, appropriately used, and sufficiently
sensitive enough to generate data from which signal can be discerned from noise;

Table 3. List of sampling locations in the 2021 Mill Creek study area with site code, stream name, proximity to CSO, SSO, WWTP, and industrial point sources, and the biological, habitat, and chemical parameters collected at each site.

									Drain.		Macro		Data-	Field							t Sediment
Site ID Basin	Stream	Stream Name	Latitude			SubType	Location-Description	CSO/SSO/Other	Area	Fish	invert	Hab-itat	Sonde	Chem	Demand	Nutrients I	Metals	Organics	mental	Metals	Organics
					Creek Mo																
MC00 23	001	Mill Creek		-84.482000			Liberty-Fairfield Rd. (SE Butler Co.)	NA	4.43	D,E	HD	QHEI		6X	6X	6X	6X	3X	Bact (6X)	Х	X
MC12 23	001	Mill Creek		-84.434910			Dst. Ikea retention pond spillway	NA	26.5	D,E	HD	QHEI	X1	6X	6X	6X	6X	3X	Bact (6X)	X	X
MC10 23	001	Mill Creek		-84.434340			Dst. E. Crescentview Rd.	NA	27.0	D,E	HD	QHEI	X1	6X	6X	6X	6X	3X	Bact (6X)	X	X
MC08 23	001	Mill Creek		-84.435300			200 m ust. E. Fk. confluence	NA	32.4	D,E	HD	QHEI	X1	6X	6X	6X	6X		Bact (6X)	Х	X
MC101 23	001	Mill Creek		-84.434034		-	R.R. trestle; dst. E. Fk. Mill Creek	NA	42.2	D	HD	QHEI	X1	6X	6X	6X	6X	3X	Bact (6X)	X	X
MC06 23	001	Mill Creek		-84.432200			Ust. E. Sharon Rd.	NA	50.0	D	HD	QHEI	X1	6X	6X	6X	6X	3X	Bact (6X)	Х	X
MC04 23	001	Mill Creek		-84.425770	_		Glendale-Milford Express Way	Glendale WWTP (1PB00012) via Town Run	61.3	D	HD	QHEI	X1	6X	6X	6X	6X	3X	Bact (6X)	Х	X
MC11 23	001	Mill Creek		-84.439116	_		Behind asphalt plant - Cavett Dr.	GE Avondale (1IN00006) via effluent ditch conveyance	68.8	D	HD	QHEI	X1	6X	6X	6X	6X	3X	Bact (6X)	Х	X
MC104 23	001	Mill Creek		-84.440690			Immediately dst. SSO 700 outfall	SSO 700 HRTF	71.0	D	HD	QHEI	X1	6X	6X	6X	6X	3X	Bact (6X)	Х	Х
MC02 23	001	Mill Creek		-84.446100			Dst. W. Columbia Rd.	CSO 513, 514*, 670, SSO 700	72.0	D	HD	QHEI	X1	6X	6X	6X	6X	3X	Bact (6X)	Х	Х
MC01 23	001	Mill Creek	39.211980	-84.454650	11.30	MSDGC	Dst. E. Galbraith Rd.	CSO 508, 509, 510, 511*, 512; Pristine, Inc. (1IN90002)	73.9	D	HD	QHEI	X2	6X	6X	6X	6X	3X	Bact (6X)	Х	X
MC80 23	001	Mill Creek	39.201460	-84.471180	10.00	MSDGC	Dst. Anthony Wayne Ave. bridge	CSO 490, SSO 572 (via West Fork Mill Creek)	115	D	HD	QHEI	X2	6X	6X	6X	6X	3X	Bact (6X)	X	Х
MC105 23	001	Mill Creek	39.203116	-84.485989	9.20	MBI New	Bank stabilization ust. North Bend Rd. @Congress Rur	CSO 490, SSO 572 (via West Fork Mill Creek)	120	D	HD	QHEI		6X	6X	6X	6X	3X	Bact (6X)	X	X
MC79 23	001	Mill Creek	39.195780	-84.489570	8.70	OH EPA	Ust. Este Ave. bridge	CSO 171, 488, 655	124	D	HD	QHEI	X2	6X	6X	6X	6X	3X	Bact (6X)	X	X
MC77 23	001	Mill Creek	39.183280	-84.498550	7.45	MSDGC	R.R. Trestle Winton Place	SSO 1065, CSO 181, 653, 544 (via Bloody Run), CSO 037, CSO 039	130	D	HD	QHEI	X2	6X	6X	6X	6X	3X	Bact (6X)	Х	X
MC09 23	001	Mill Creek	39.177799	-84.506429	6.90	MSDGC	Dst. Smuckers outfall, river left looking upstream	J.M. Smucker-Crisco 001 (1IH00026); Procter & Gamble (1IN00075)	127	D	HD	QHEI	X2	6X	6X	6X	6X	3X	Bact (6X)	Х	X
MC07 23	001	Mill Creek	39.169252	-84.505762	6.35	MSDGC	At RR tressel; dst. Spring Grove Ave & Smuckers	CSO 483 (via Kings Run), 485, 486, 487 (via pipe @RM 6.45)	135	D	HD	QHEI		6X	6X	6X	6X	3X	Bact (6X)	Х	X
MC75 23	001	Mill Creek	39.162200	-84.523300	5.10	OH EPA	Adj. Salway Park	CSO 025, 026*, 028, 030, 033, 480, 481, 482	136	Р	HD	QHEI	X2	6X	6X	6X	6X	3X	Bact (6X)	Х	Х
MC74 23	001	Mill Creek	39.157210	-84.537830	4.25	MSDGC	Ust. S. Ludlow Ave, bridge	CSO 022, 023, 024, 179*	141	Р	HD	QHEI	X2	6X	6X	6X	6X	3X	Bact (6X)	Х	Х
MC73 23	001	Mill Creek	39.148960	-84.546420	3.50	MSDGC	Ust. Mill Creek Rd.	CSO 017, 018, 019*, 021; 528, 529, 530 (via West Fork Creek)	154	Р	HD	QHEI	X2	6X	6X	6X	6X	3X	Bact (6X)	Х	Х
MC72 23	001	Mill Creek	39.144200	-84.547800	3.10	OH EPA	Dst. Mill Creek Rd.	CSO 015	155	Р	HD	QHEI	X2	6X	6X	6X	6X	3X	Bact (6X)	Х	Х
MC05 23	001	Mill Creek		-84.546027		MSDGC	Dst. Hopple Street bridge	CSO 010, 011, 012, 013, 014	154	Р	HD	QHEI	X2	6X	6X	6X	6X	3X	Bact (6X)	Х	X
MC03 23	001	Mill Creek		-84.543167		MSDGC	Dst. Lick Run CSO (005)	CSO 005 (Lick Run), 006, 007, 008*, 009	163	P	HD	QHEI	X2	6X	6X	6X	6X	3X	Bact (6X)	Х	X
MC71 23	001	Mill Creek		-84.544700		OH EPA	Ust. Gest Street bridge	CSO 152, 002, 003, 004, 666, SSO 1066	165	P P		QHEI	742	6X	6X	6X	6X	3X	Bact (6X)	X	X
MC70 23	001	Mill Creek		-84.545000		OH EPA	Dst. Mill Creek WWTP	CSO 428, 429; MSDGC Mill Creek WWTP 001 (1PM00001)	165	P		QHEI		6X	6X	6X	6X	3X	Bact (6X)	X	X
MC69 23	001			-84.543820	_	MSDGC	R.R. trestle - Queensgate	CSO 428, 429; MSDGC Mill Creek WWTP 001 (1PM00001)	166	Р		QHEI		6X	6X	6X	6X		Bact (6X)	X	X
101003 23	001	IVIIII CIEEK	33.100000		Fork M		n.n. trestie - Queensgate	C3O 428, 423, W3DGC WIIII CIEEK WW 11 001 (11 W100001)	100			QIILI		UX.	- OA	UX.	UX.	3/	Dact (OA)		
MC45 23	004	W. Fk. Mill Cr.	20 212200			OHEPA	Elliot Ave.	SSO 572, CSO 226	36.4	Е	HD	QHEI	X2	6X	6X	6X	6X	3X	Bact (6X)	Х	Х
101043 23	004	W. FK. WIIII CT.	35.213300		Fork Mi		Lillot Ave.	330 372, C30 220	30.4		TID	QIILI	٨٧	- 0/	UA	UA	UA	3^	Bact (UA)		^
MC10 22	000	E Els Maill Ca	20 204427				Het Britan Co. Harrey Mill Creek MANTD	NIA.	0.25	_	ш	OUE	V1	6X	6X	6X	CV	3X	D==+ (CV)	Х	X
MC18 23	006			-84.430850			Ust. Butler Co. Upper Mill Creek WWTP	NA	9.25	E	HD	QHEI	X1		-		6X		Bact (6X)		
MC15 23	006			-84.431017			Dst. Butler Co. Upper Mill Creek WWTP	Butler Co. Upper Mill Creek WRF (1PK00016)	9.29	E	HD	QHEI	X1	6X	6X	6X 6X	6X	3X	Bact (6X)	X	X
MC14 23	006			-84.429700		MSDGC	Crescentville Rd.	NA	9.53	E	HD	QHEI		6X	6X		6X	3X	Bact (6X)	X	X
MC16 23	006	E. Fk. Mill Cr.	39.289700				Fada Drive	NA	9.66	E	HD	QHEI	X1	6X	6X	6X	6X	3X	Bact (6X)	X	X
10100					_	Tributaries	la a .	1400 00 D 1 1 200000000	0.45			0.15.6.11		***	414	41/	214	414	B . (4)()		_
MC106 23	XXX	Lick Run		-84.566801			v Grotto Court	MSDGC Project 28607052	3.45	E,F	QL	QHEI/HHE		4X	4X	4X	2X	1X	Bact (4X)		
MC107 23	XXX	Lick Run					v Queen City Cora Ave.	MSDGC Project 25203017	3.55	E,F	QL	QHEI/HHE		4X	4X	4X	2X	1X	Bact (4X)		
MC108 23	XXX	Lick Run					v Glenway Woods	MSDGC Project 28709041	0.31	E,F	QL	QHEI/HHE		4X	4X	4X	2X	1X	Bact (4X)		
MC97 23	028	Kings Run		-84.555620		MSDGC 201	,		0.84	E,F	QL	QHEI/HHE		4X	4X	4X	2X	1X	Bact (4X)	Х	Х
MC109 23	028					MSDGC nev	Along Wooden Shoe Hollow Lane	MSDGC Project 32414093; CSO 217	0.91	E,F	QL	QHEI/HHE	1	4X	4X	4X	2X	1X	Bact (4X)	Х	Х
MC111 23	009	Cooper Creek	39.219496	-84.391084	3.57	MSDGC 201	1 Ust. Plainfield Rd.	MSDGC Project 48110025	0.34	E,F	QL	QHEI		4X	4X	4X	2X	1X	Bact (4X)	Х	Х
MC112 23	009	Cooper Creek	39.2194	-84.3912	3.42	HCSWD	Approx 300-ft above Plainfield Rd		0.48	E,F	QL	QHEI/HHE	1	4X	4X	4X	2X	1X	Bact (4X)	X	X
MC113 23	009	Cooper Creek	39.2171	-84.4056	2.84	HCSWD	Below Wecklow Ave.		1.10	E,F	QL	QHEI/HHE	1	4X	4X	4X	2X	1X	Bact (4X)	Х	Х
MC32 23	009	Cooper Creek	39.2189	-84.41	2.59	HCSWD	Approx 1,500-ft above RT 126 culvert		1.80	E,F	QL	QHEI/HHE	1	4X	4X	4X	2X	1X	Bact (4X)	Х	Х
MC28 23	009	Cooper Creek	39.2225	-84.4157	2.13	HCSWD	Ust. Plainfield Rd.		2.60	E,F	QL	QHEI/HHE	1	4X	4X	4X	2X	1X	Bact (4X)	Х	Х
MC118 23	009	Cooper Creek	39.2296	-84.4156	1.58	MSDGC nev	v end of N. Kathwood Cir.		3.99	E,F	QL	QHEI		4X	4X	4X	2X	1X	Bact (4X)	Х	Х
MC119 23	009	Cooper Creek	39.2358	-84.4287	0.44	MSDGC nev	v Ust. Reading Rd		5.43	E,F	QL	QHEI		4X	4X	4X	2X	1X	Bact (4X)	Х	Х
MC114 23		U.T. Cooper Cree	39.2111	-84.409	0.55		Between Langhorst Ct. and Jeffery Ct.		0.49	E,F	QL	QHEI/HHE	1	4X	4X	4X	2X		Bact (4X)	Х	Х
- CSO/SSO contr	olled per	terms of the Consent	Decree and W	/WIP.			· · · · · · · · · · · · · · · · · · ·			44	41	44	24	44	44	44	44	44	44	41	41
230/330 00110						n with Ohio EP				7-7	71		27	77			7-7			71	72

Figure 6. The 2021 Mill Creek study area showing sampling locations by site code (see Table 1) and the occurrence of CSO/SSO/PSO locations.

- measurable parameters and indicators of incremental change include biological, chemical, and physical properties or attributes of an aquatic ecosystem that can be used to reliably indicate a change in condition; and,
- *a positive change in condition* means a measurable improvement that is related to a reduction in a specific pollutant load, a reduction in the number of impairment causes, a reduction in an accepted non-pollutant measure of degradation, or an increase in an accepted measure of waterbody condition relevant to designated use support.

This was accomplished for this study by comparing the results of prior, comparable assessments. In this case, there has been a series of bioassessments beginning in 1992 by Ohio EPA (1994) which serves as the baseline against which subsequent results were compared to assess incremental changes in key parameters and indicators. Subsequent to 1992, sufficient data is available from 1997 (Ohio EPA), 2011 (MBI), 2013 (MBI), 2014 (Ohio EPA) and 2016 (MBI) to inform the analyses. Historical chemical data from the early 1970s was also accessed and is part of the analysis of chemical parameter groups in the results section.

Biological Methods

All biological sampling methods are defined by the applicable protocols published by the Ohio EPA (1987a,b; 1989a,b; 2006, 2015 a,b). These meet the specifications of the Ohio WQS and are used to assess aquatic life and recreational use designations, to determine the extent and severity of impairments, and to document incremental changes that result from pollution abatement actions.

Fish Assemblage Methods

Methods for the collection of fish at wadeable sites was performed using a tow-barge or long-line pulsed D.C. electrofishing equipment based on a T&J 1736 DCV electrofishing unit described by Ohio EPA (1989a). A Wisconsin DNR battery powered backpack electrofishing unit was used as an alternative to the long line in the smallest streams and in accordance with the restrictions described by Ohio EPA (1989a). A three-person crew carried out the sampling protocol for each type of wading equipment. Sampling effort was indexed to lineal distance and ranged from 150- 200 meters in length. Non-wadeable sites were sampled with a raft-mounted pulsed D.C. electrofishing device. A Smith-Root 5.0 GPP unit was mounted on a 14' Sea eagle raft with an electrode array in keeping with Ohio EPA (1989a) electrofishing design specifications. Sampling effort for this method was 500 meters. Sampling was conducted during a June 16-October 15 seasonal index period twice at all sites. A more detailed summary of the key aspects of each method appears in the *Watershed Monitoring and Bioassessment Plan for the MSD Greater Cincinnati Service Area, Hamilton County, Ohio; Technical Report MBI/5-11-3* (MBI 2011).

Macroinvertebrate Assemblage Methods

Macroinvertebrates were sampled using modified Hester-Dendy artificial substrate samplers (quantitative sample) and a qualitative dip net/hand pick method in accordance with Ohio EPA macroinvertebrate assessment procedures (Ohio EPA 1989a, 2015a). The artificial substrates were exposed for a colonization period of six weeks between July 12 and September 14 and placed to ensure adequate stream flow over the substrates, but in general samplers should be set where flow is 0.3 feet/second over the plates. A qualitative sample using a triangular frame dip net and hand picking was collected at the time of substrate retrieval. All samples were initially preserved in a 10% solution of formaldehyde. Substrates were then transferred to the laboratory, disassembled, sieved (standard no. 30 and 40), and transferred to 70% ethyl alcohol. Laboratory sample processing of both the quantitative and qualitative samples included an initial scan and pre-pick for large and rare taxa followed by subsampling procedures in accordance with Ohio EPA (1989a, 2015a). Identifications were performed to the lowest taxonomic resolution possible for the commonly encountered orders and families, which is genus/species for most organisms. From these results, the density of macroinvertebrates per square foot is determined as well as a taxonomic richness and an Invertebrate Community Index (ICI; Ohio EPA 1987b; DeShon 1995) score for the quantitative samples and a narrative assessment for the standalone qualitative samples. A more detailed summary of the key aspects of the methods appears in the Watershed Monitoring and Bioassessment Plan for the MSD Greater Cincinnati Service Area, Hamilton County, Ohio; Technical Report MBI/5-11-3 (MBI 2011).

Area of Degradation and Attainment Values

The ADV (Yoder and Rankin 1995; Yoder et al. 2005) was originally developed to quantify the extent and severity of departures from a biocriterion within a defined river reach. For reaches that exceed a biocriterion, it is expressed as an Area of Attainment Value (AAV) that quantifies the extent to which minimum attainment criteria are surpassed. The ADV/AAV correspond to the area of the polygon formed by the longitudinal profile of IBI scores and the straight line boundary formed by a criterion, the ADV below and the AAV above. The computational formula (after Yoder et al. 2005) is:

```
ADV/AAV = \sum [(alBla + alBlb) – (plBla +plBlb)] *(RMa – RMb), for a = 1 to n, where;
alBla = actual lBl at river mile a,
alBlb = actual lBl at river mile b,
```

pIBIa = IBI biocriterion at river mile a, pIBIb = IBI biocriterion at river mile b, RMa = upstream most river mile, RMb = downstream most river mile, and n = number of samples.

The average of two contiguous sampling sites is assumed to integrate biological assemblage status for the distance between the points. The intensive pollution survey design typically positions sites in close enough proximity to sources of stress and along probable zones of

impact and recovery so that meaningful changes are adequately captured. We have observed biological assemblages as portrayed by their respective indices to change predictably in proximity to major sources and types of pollution in numerous instances (Ohio EPA1987a; Yoder and Rankin 1995; Yoder and Smith 1999; Yoder et al. 2005). Thus, the longitudinal connection of contiguous sampling points produces a reasonably accurate portrayal of the extent and severity of impairment in a specified river reach as reflected by the indices (Yoder and Rankin 1995). The total ADV/AAV for a specified river segment is normalized to ADV/AAV units/mile for making comparisons between years and rivers. The ADV is calculated as a negative (below the biocriterion) expression; the AAV is calculated as a positive (above the biocriterion) expression. Each depicts the extent and degree of impairment (ADV) and attainment (AAV) of a biological criterion, which provides a more quantitative depiction of quality than do pass/fail descriptions. It also allows the visualization of incremental changes in condition that may not alter the pass/fail status, but are nonetheless meaningful in terms of incremental change over space and time. In these analyses, the Warmwater Habitat (WWH) biocriterion for the fish and macroinvertebrate indices, which varies by use designation and ecoregion, was used as the threshold for calculating the ADV and AAV for the Mill Creek mainstem. The WWH use designation represents the minimum goal required by the Clean Water Act (CWA) for the protection and propagation of aquatic life, thus it was used as a standard benchmark for the ADV/AAV analyses.

Habitat Assessment

Physical habitat was evaluated using the Qualitative Habitat Evaluation Index (QHEI) developed by the Ohio EPA for streams and rivers in Ohio (Rankin 1989, 1995). Various attributes of the habitat are scored based on the overall importance of each to the maintenance of viable, diverse, and functional aquatic faunas. The type(s) and quality of substrates, amount and quality of instream cover, channel morphology, extent and quality of riparian vegetation, pool, run, and riffle development and quality, and gradient are some of the metrics used to determine the QHEI score which generally ranges from 20 to less than 100. The QHEI is used to evaluate the characteristics of a stream segment, as opposed to the characteristics of a single sampling site. As such, individual sites may have poorer physical habitat due to a localized disturbance yet still support aquatic communities closely resembling those sampled at adjacent sites with better habitat, provided water quality conditions are similar. QHEI scores from hundreds of segments around the state have indicated that values greater than 60 are generally conducive to the existence of warmwater faunas whereas scores less than 45 generally cannot support a warmwater assemblage consistent with baseline Clean Water Act goal expectations (e.g., the WWH in the Ohio WQS).

Physical habitat was also evaluated at sites draining <2.5 mi.² using the Headwater Habitat Evaluation Index (HHEI) developed by Ohio EPA (2020). The HHEI scores various attributes of the physical habitat that have been found to be statistically important determinants of biological community structure in primary headwater streams. Statistical analysis of a large number of physical habitat measurements showed that three QHEI habitat variables (channel substrate composition, bank full width, and maximum pool depth) are sufficient in

distinguishing the physical habitat of primary headwater streams using the HHEI. The characterization of the channel substrate includes a visual assessment of a 200-foot stream reach using a reasonably detailed evaluation of both the dominant types of substrate and the total number of substrate types. Bank full width is a morphological characteristic of streams that is determined by the energy dynamics related to flow and has been found to be a strong discriminator of the three classes of primary headwater streams in Ohio. The bank full width is the average of 3-4 separate bank full measurements along the stream reach. The maximum pool depth within the stream reach is important since it is a key indicator of whether the stream can support a WWH fish assemblage. Streams with pools less than 20 cm in depth during the low flow periods of the year are less likely to have WWH fish assemblages and thus more likely to have viable populations of lungless salamanders, which replace fish as the key vertebrate indicator in primary headwater streams.

Chemical/Physical Methods

Chemical/physical assessment for the MSDGC service area includes the collection and analysis of water samples for chemical/physical and bacterial analysis and sediment samples for determining sediment chemical quality. Methods for the collection of water column chemical/physical and bacterial samples followed the procedures of Ohio EPA (2019a,b) and MSDGC (2011c). Sediment chemical sampling followed that described by Ohio EPA (2019c). All laboratory analysis was performed and/or overseen by MSDGC.

Water Column Chemical Quality

Water column chemical quality was determined by the collection and analysis of grab water samples, instantaneous measurements recorded with a water quality meter, and continuous measurements recorded at 3–4-day intervals in the mainstem and larger tributary sites and at the reference sites.

Grab Sampling

Grab samples of water were collected with a stainless steel bucket from a location as close to the center point of the stream channel as possible by MBI and MSDGC sampling crews. Samples were collected from the upper 12-24 inches of the surface and then transferred to sample containers in accordance with MSDGC procedures (MSDGC 2011c). Sampling was conducted between mid-June and mid-October and under "normal" summer-fall low flows. Elevated flows following precipitation events were avoided and sampling was delayed until flows subsided. The frequency of sampling ranged from approximately weekly at mainstem sites and sites with multiple impacts to bi-weekly, four (4) times per season, two (2) times per season, and once at Primary Headwater sites. Water samples were collected provided there was sufficient water depth to collect a sample without disturbing the substrates. Instantaneous values for temperature (°C), conductivity (μ S/cm2), pH (S.U.), and dissolved oxygen (D.O.; mg/l) were recorded with a YSI Model 664 meter at the time of grab sample collection.

Continuous Recordings

Continuous readings of temperature (°C), conductivity (μ S/cm2), pH (S.U.), and dissolved oxygen (D.O.; mg/l) were recorded with a YSI 6920 V2 Sonde ("Datasonde") instrument at mainstem, major tributary, and reference site locations. The Datasondes were set as close as possible to the Thalweg (i.e., deepest part of the stream channel) in a PVC enclosure that ensured no contact with the stream bottom or other solid objects. The Datasondes were positioned vertically where depth allowed by driving steel fence posts into the bottom and positioning the PVC enclosure in an upright position. Where the depth was too shallow the PVC enclosure was secured in a horizontal position in an area of the stream channel with continuous flow. All Datasondes were secured against theft or vandalism as much as possible. Datasondes were deployed for a 3–4-day continuous interval during periods of maximum summer temperatures and normal summer flows. Readings were taken at 15-minute intervals. At the time of retrieval, data was downloaded to a YSI Model 650 Instrument with high memory capacity and then transferred to a PC for storage and later analysis.

Sediment Chemical Quality

Fine grain sediment samples were collected in the upper four (4) inches of bottom material at each sampling location using decontaminated stainless steel spoons and excavated using nitrile gloves. Decontamination of sediment sampling equipment followed the procedures outlined in the Ohio EPA sediment sampling guidance manual (Ohio EPA 2015c).

Sediment grab samples were homogenized in stainless steel pans (material for VOC analysis was not homogenized), transferred into glass jars with Teflon® lined lids, placed on ice (to maintain 4°C) in a cooler, and delivered to Metropolitan Sewer District of Greater Cincinnati, Division of Industrial Waste Lab. Sediment data is reported on a dry weight basis. Sediment samples were analyzed for total analyte list inorganics (metals), nutrients, volatile organic compounds, semivolatile organic compounds, PCBs, total petroleum hydrocarbons, and cyanide.

Determining Use Attainment Status

Use attainment status is a term which describes the degree to which environmental parameters or indicators are either above or below criteria specified by the Ohio Water Quality Standards (WQS; Ohio Administrative Code 3745-1). For the Mill Creek watershed assessment, two use designations are being evaluated: aquatic life and recreation in and on the water by humans. Hence, the process herein is referred to as the determination of aquatic life and recreational status for each sampling site. The process is applied to data collected by ambient assessments and applies to rivers and streams outside of discharge mixing zones.

Aquatic Life

Aquatic life use attainment status is determined by the Ohio EPA biological criteria (OAC 3745-1-07; Table 7-17). Numerical biological criteria are based on multimetric biological indices which include the Index of Biotic Integrity (IBI) and modified Index of Well-Being (MIwb), which

indicate the response of the fish assemblage, and the Invertebrate Community Index (ICI), which indicates the response of the macroinvertebrate assemblage. The IBI and ICI are multimetric indices patterned after an original IBI described by Karr (1981) and Fausch et al. (1984) and subsequently modified by Ohio EPA (1987b) for application to Ohio rivers and streams. The ICI was developed by Ohio EPA (1987b) and is further described by DeShon (1995). The MIwb is a measure of fish community abundance and diversity using numbers and weight information and is a modification of the original Index of Well-Being originally applied to fish community information (Gammon 1976; Gammon et al. 1981). Numerical biocriteria are stratified by ecoregion, use designation, and stream or river size. Three attainment status results are possible at each sampling location: full, partial, or non-attainment. Full attainment means that all of the indices meet the applicable biocriteria. Partial attainment means that one or more of the indices fails to meet the applicable biocriteria. Non-attainment means that none of the indices meet the applicable biocriteria or one of the organism groups reflects poor or very poor quality. An aquatic life use attainment table (see Table 1) is constructed based on the sampling results and is arranged from upstream to downstream and includes the sampling locations indicated by river mile, the applicable biological indices, the use attainment status (i.e., full, partial, or non), the Qualitative Habitat Evaluation Index (QHEI), and comments and observations for each sampling location. The use attainment table is further organized by Ohio EPA Waterbody Assessment Unit so that the results can be used by Ohio EPA for assessment purposes.

Recreation

Water quality criteria for determining attainment of recreational uses are established in the Ohio Water Quality Standards (OAC 3745-1-07; Table 7-13) based upon the quantities of bacterial indicators (Escherichia coli) present in the water column. Escherichia coli (E. coli) bacteria are microscopic organisms that are normally present in the feces and intestinal tracts of humans and other warm-blooded animals. E. coli typically comprises approximately 97 percent of the organisms found in the fecal coliform bacteria of human feces (Dufour 1977). There is currently no simple way to differentiate between human and animal sources of coliform bacteria in surface waters, although methodologies for this type of analysis are being developed, including recent research supported by MSDGC. These microorganisms can enter water bodies where there is a direct discharge of human and animal wastes, or with runoff from soils where wastes have been deposited. Pathogenic (disease-causing) organisms are typically present in the environment in such small amounts that it is impractical to directly monitor each type of pathogen. Fecal indicator bacteria by themselves, including E. coli, are usually not pathogenic. However, some strains of E. coli can be pathogenic, capable of causing serious illness. Although not necessarily agents of disease, fecal indicator bacteria such as E. coli may signal the potential presence of pathogenic organisms that enter the environment via the same pathways. When E. coli are present in extremely high numbers in a water sample, it invariably means the water has received fecal matter from one or more sources.

The Ohio WQS for recreational uses were revised in early 2016 to reflect a more rigid adherence to any form of contact with surface waters as ensuing the same level of risk. This replaced the former framework that was stratified to account for the degree of contact with 3

levels of the Primary Contact Recreational (PCR) use as PCR-A, PCR-B, and PCR-C. Those subcategories are essentially merged into a single use. This action also obviated the recommendations made in the 2011-14 watershed assessments for assignment certain streams to one of the three former subcategories. The application of the Secondary Contact Recreational (SCR) use was also changed to a more restrictive interpretation of the potential for human contact with surface waters. Existing SCR designations remain but could potentially be reviewed and revised to PCR by Ohio EPA. Any new SCR recommendations would need to document that there is no human contact possible due to physical restrictions to access a surface water. As a result, the evaluation of the recreational uses in the 2016 Mill Creek study were done in accordance with the existing designations of PCR and SCR if applicable.

Streams in the Mill Creek watershed are designated as primary contact recreation (PCR) and/or secondary contact recreation (SCR) use in the Ohio WQS (OAC 3745-1- 30). Water bodies with a designated recreation use of PCR "... are suitable for one or more full-body contact recreation activities such as, but not limited to, wading, swimming, boating, water skiing, canoeing, kayaking, and scuba diving" (OAC 3745-1- 07(B)(4)(b)). Secondary Contact includes waters that "... result in minimal exposure potential to water borne pathogens because the waters are: rarely used for water based recreation such as, but not limited to, wading; situated in remote, sparsely populated areas; have restricted access points; and have insufficient depth to provide full body immersion, thereby greatly limiting the potential for water based recreation activities."

The *E. coli* criterion that applies to PCR is expressed as a 90-day geometric mean of \leq 126 colony forming units (cfu)/100 ml with a Statistical Threshold Value of 410 cfu/100 ml¹. The criterion that applies to SCR streams is \leq 1,030 cfu/100 ml for both the 90-day geometric mean and the STV. The geometric mean is based on two or more samples and is used as the basis for determining the attainment status of the PCR use.

Determining Use Attainability

Use designation reviews and recommendations for revisions, whenever necessary, were a major product of the series of 2011-14 watershed assessments conducted throughout the MSDGC service area. Since the 2021 Mill Creek survey is a reassessment of a portion of the 2011 study area, we did not expect to have any use change recommendations. The details of the 2011-14 use recommendations are available in each watershed assessment report that can be found at: https://msdgc.org/programs/water-quality/index.html. Given the status of the 2011-16 data as Level 3 credible data it was eligible to be used by Ohio EPA to revise certain use designations. All the use recommendations made for the warmwater habitat suite of uses were either adopted or are in the process of being adopted by Ohio EPA into the Ohio WQS. None of the recreational use recommendations were accepted because of the subsequent revision to the recreational uses and criteria and how the uses are assigned to individual stream segments. None of the Primary Headwater Habitat (PHWH) use recommendations were adopted because

¹ These criteria shall not be exceeded in more than ten per cent of the samples taken during any ninety-day period.

29

Ohio EPA has not adopted PHWH as a use nor have they determined how to treat such segments. For the interim, MSDGC is assuming such streams will receive protections equivalent to WWH.

Determining Causal Associations

Using the results, conclusions, and recommendations of this report requires an understanding of the methodology used to determine biological status (i.e., unimpaired or impaired, narrative ratings of quality) and assign associated causes and sources of impairment utilizing the accompanying chemical/physical data and source information (e.g., point source loadings, land use). The identification of impairment in rivers and streams is straightforward—the numerical biological indices are the principal arbiter of aquatic life use attainment and impairment following the guidelines of Ohio EPA (1987). The rationale for using the biological results in the role as the principal arbiter within a weight of evidence framework has been extensively discussed elsewhere (Karr et al. 1986; Karr 1991; Ohio EPA 1987a,b; Yoder 1991; Yoder 1995).

Describing the causes and sources associated with observed biological impairments relies on an interpretation of multiple lines of evidence, including water chemistry data, sediment data, habitat data, effluent data, land use data, and biological response signatures (Yoder and Rankin 1995; Yoder and DeShon 2003). Thus, the assignment of associated causes and sources of biological impairment in this report represents the association of impairments (based on response indicators) with stressor and exposure indicators using linkages to the bioassessment data based on previous experiences within the strata of analogous situations and impacts. For example, exceedances of established chemical thresholds such as chronic and acute water quality criteria or sediment effect thresholds are grounds for listing such categories of parameters to include individual pollutants if they co-occur with a biological impairment.

Biological effect thresholds derived in the *Integrated Prioritization System (IPS) Documentation* and Atlas of Biological Stressor Relationships for Southwest Ohio (Technical Report MBI/2015-12-15, MBI 2015) were also used to evaluate MSDGC service area data. These were used either as primary or supplemental screenings for the interpretation of biological impairments consistent with the WQS for the application of biological criteria in Ohio² and to assign the severity of a cause as very poor, poor, or fair. These were used to weight the causes with very poor =5, poor =3, and fair = 1. The IPS outputs were also used to list threat factors for all fully attaining sites.

Hierarchy of Water Indicators

A carefully conceived ambient monitoring approach, using cost-effective indicators comprised of ecological, chemical, and toxicological measures, can ensure that all pollution sources are judged objectively based on environmental results. A tiered approach that links the results of administrative actions with true environmental measures was employed in our analyses and within the limitations of the data that is currently available for certain sources. This integrated

²OAC 3745-1-07(A)(6)(a) for full attainment and (A)(6)(b) for non-attainment.

30

_

approach is outlined in Figure 4 and includes a hierarchical continuum from administrative to true environmental indicators. The six "levels" of indicators include:

- 1. Actions taken by regulatory agencies (permitting, enforcement, grants);
- 2. Responses by the regulated community (treatment works, pollution prevention);
- 3. Changes in discharged quantities (pollutant loadings);
- 4. Changes in ambient conditions (water quality, habitat);
- 5. Changes in uptake and/or assimilation (tissue contamination, biomarkers, assimilative capacity); and,
- 6. Changes in health, ecology, or other effects (ecological condition, pathogens).

In this process, the results of administrative activities (levels 1 and 2) can be linked to efforts to

Completing the Cycle of WQ Management: Assessing and Guiding Management Actions with Integrated Environmental Assessment

Indicator Levels

1: Management actions Administrative Indicators [permits, plans, grants, 2: Response to management enforcement, abatements] Stressor Indicators [pollutant 3: Stressor abatement loadings, land use practices] 4: Ambient conditions Exposure Indicators [pollutant levels, habitat quality, ecosystem 5: Assimilation and uptake process, fate & transport] Response Indicators [biological 6: Biological response metrics, multimetric indices]

Ecological "Health" Endpoint

Figure 7. Hierarchy of administrative and environmental indicators which can be used for water quality management activities such as monitoring and assessment, reporting, and the evaluation of overall program effectiveness. This is patterned after a model developed by U.S. EPA (1995a,b) and further enhanced by Karr and Yoder (2004).

improve water quality (levels 3, 4, and 5) which should translate into the environmental "results" (level 6). An example is the aggregate effect of billions of dollars spent on water pollution control since the early 1970s that have been determined with quantifiable measures

of environmental condition (Yoder et al. 2005). Superimposed on this hierarchy is the concept of stressor, exposure, and response indicators. *Stressor* indicators generally include activities which have the potential to degrade the aquatic environment such as pollutant discharges (permitted and unpermitted), land use effects, and habitat modifications. *Exposure* indicators are those which measure the effects of stressors and can include whole effluent toxicity tests, tissue residues, and biomarkers, each of which provides evidence of biological exposure to a stressor or bioaccumulative agent. *Response* indicators are generally composite measures of the cumulative effects of stress and exposure and include the more direct measures of community and population response that are represented here by the biological indices which comprise the Ohio EPA biological endpoints. Other response indicators can include target assemblages (*i.e.*, rare, threatened, endangered, special status, and declining species or bacterial levels that serve as surrogates for the recreational uses). These indicators represent the essential technical elements for watershed-based management approaches. The key, however, is to use the different indicators *within* the roles which are most appropriate for each (Yoder and Rankin 1998).

STUDY AREA DESCRIPTION

General Setting

The Mill Creek basin lies within the Interior Plateau Ecoregion of southwest Ohio and is bounded by the Great Miami River basin to the northwest, the Little Miami River basin to the east, and the Ohio River and direct tributary watersheds to the south and west. Mill Creek flows 28.1 miles from the headwaters in southeastern Butler County through central Hamilton County to a confluence with the Ohio River. The drainage area of Mill Creek is 166.2 square miles. Along its course, the stream has an average gradient of 11.9 feet per mile (Ohio DNR 1960). The total fall of Mill Creek from its headwaters in Butler County to the barrier dam near the mouth in Hamilton County is approximately 350 feet in elevation. The valley bottom in the upper reaches of the watershed is wide, averaging 1½ miles, and narrowing considerably in the downstream reaches, averaging only ½ mile through the City of Cincinnati. In the lower portion of the Mill Creek basin the valley walls are steep, rising 200-300 feet above the valley floor. Major tributaries include the East Fork Mill Creek, Sharon Creek, Beaver Creek, and the West Fork Mill of Creek. The tributaries are generally underlain by thinly inter-bedded layers of shales and limestone bedrock except in the lower reaches close to their confluences with Mill Creek. Most of Mill Creek flows atop a buried valley aquifer composed of highly permeable sands and gravel from glacial deposits and outwash. The upper portion of the Mill Creek watershed located in Butler County is mostly rural but is becoming increasingly suburban. The lower portion of Mill Creek is highly urbanized and is almost completely developed. This development consists of a mix of industrial, commercial, residential, transportation, and public properties.

Subecoregion Characteristics

Mill Creek lies within two different level III ecoregions, the Interior Plateau (IP) and the Eastern Corn Belt Plains (ECBP; Omernik 1987). Subsequent delineations of Level IV subregions provided more detail about the four components of ecoregions; surficial geology, soils, potential natural vegetation, and land use (Woods et al. 1995). The lower Mill Creek subwatershed and much of the West Fork of Mill Creek lie entirely within the Northern Bluegrass subregion (71d) of the Interior Plateau ecoregion. The remainder of the middle Mill Creek subwatershed lies within the Pre-Wisconsinan Drift Plains subregion (55d) of the Eastern Corn Belt Plains ecoregion. The southernmost portion of the upper Mill Creek watershed is within the Wisconsinan Drift Plains subregion (55d) and the northern portion, and the East Fork of Mill Creek lie within the Loamy High-lime Till Plains subregion (55b) of the ECBP ecoregion. The characteristics of each subregion appear in Table 4.

Description of Pollution Sources and Other Stressors

Pollution sources and general stressors are both numerous and overlapping in the Mill Creek watershed. These sources include permitted discharges of municipal and industrial process wastewater, discharges from combined and sanitary sewer overflows (CSO and SSO), releases from industrial facilities, urban runoff and its associated chemical pollution, hydrological

Table 4. Level IV subregions of the Mill Creek watershed and their key attributes (from Woods et al. 1995).

Level IV Subregion	Physiography	Geology	Soils	Potential Natural Vegetation	Land Use/Land Cover
Loamy, High Lime Till Plains (55b)	Glaciated; level to rolling glacial till plain with low gradient streams; also end moraines and glacial outwash landforms.	Loamy, high lime, late-Wisconsinan glacial till and also glacial outwash and scattered loess overlie Paleozoic carbonates and shale.	Alfisols (Hapludalfs, Epiaqualfs, Endoaqualfs), Mollisols (Argiaquolls, Endoaquolls, Argiudolls), Entisols (Fluvaquents)	Mostly beech forest; also, oaksugar maple forest, elm-ash swamp forest on poorly-drained valley bottoms and ground moraines.	Extensive corn, soybean, and livestock farming; also scattered beech-maple, pin oak-swamp, white oak woodlands. Urban-industrial activity in municipal areas.
Pre- Wisconsinan Drift Plains (55d)	Glaciated. Dissected glacial till plain with low to medium gradient streams.	Deeply leached, acidic pre- Wisconsinan clay- loam glacial till and thin loess overlie Paleozoic carbonates.	Alfisols (Fragiudalfs, Hapludalfs, Fragiaqualfs, Glossaqualfs), Entisols (Fluvaquents)	Mostly beech forest, elm-ash swamp forest; also oak-sugar maple forest.	Soybean, livestock, corn, general, and tobacco farming; where poorly- drained or rugged, pin oak- swamp, white oak flatwoods, and beech-maple woodlands.
Northern Bluegrass (71d)	Unglaciated and glaciated; dissected plains and hills with medium gradient, gravel bottom streams. Steep slopes, high relief near Ohio River.	Discontinuous loess and leached pre- Wisconsinan glacial till deposits. Ordovician limestone and shale.	Alfisols (Hapludalfs, Fragiudalfs), Mollisols (Hapludolls)	Mixed meso- phytic forest, mixed oak forest, oak-sugar maple forest; along Ohio River, bottomland hardwoods.	Mosaic of forest, agriculture, and urban-industrial activity near Cincinnati and elsewhere along Ohio River. Wooded where steep

alterations, and direct and indirect habitat alterations. These are described in the following discussions and major point sources, CSOs, and SSOs are included in Table 3.

Point Sources

There are approximately 20 point source discharges in the Mill Creek watershed that hold National Pollutant Discharge Elimination System (NPDES) permits. Together these sources discharge approximately 16 MGD of either treated sanitary wastewater, industrial process wastewater, or cooling water. The largest facility discharging treated sanitary wastewater in the watershed is the Butler Co. Upper Mill Creek Water Reclamation Facility. This plant discharges to the East Fork Mill Creek at RM 1.07. It currently discharges approximately 8 MGD and has been approved to expand its capacity to 16 MGD. Butler Co. is adding a denitrification process

to the treatment facility as part of the expansion to 16 MGD. The new expansion will also be constructed with an anoxic zone, which is specifically designed to effectively reduce nitrate-nitrogen and ammonia-nitrogen. The facility was also required to install nutrient removal by 2006. The General Electric Aircraft Engine facility in Evendale has the largest volume of cooling water and stormwater discharges in the Mill Creek watershed. It releases approximately 5.4 MGD of cooling and stormwater to Mill Creek via the GE tributary (RM 13.8).

Wet Weather Sources

The two major sources of wet weather-related pollution in Mill Creek emanate from combined sewer overflows (CSOs) and sanitary sewer overflows (SSOs). These occur because the volume of sanitary wastewater and stormwater entering the MSDGC sewer system during precipitation events (i.e., "wet weather") exceeds the capacity of the pipes and other equipment in the collection system. While CSOs and SSOs exist throughout much of Mill Creek, the highest concentration of outfalls and loadings occurs in Mill Creek below the SSO 700 outfall. Approximately one-third of MSDGC's sewers are combined sewers and the rest are sanitary sewers (MSDGC 2006).

Riparian and Stream Habitat

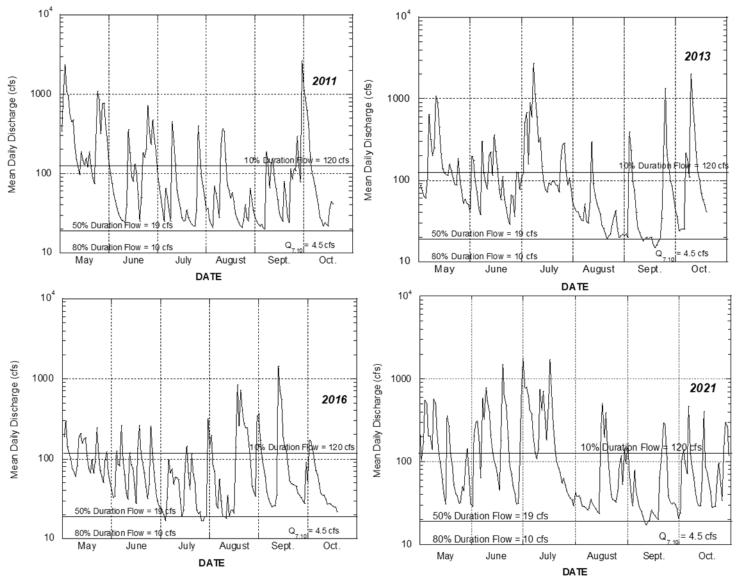
In response to extensive damage caused by major floods in 1937 and 1959, the Mill Creek Valley Conservancy District (MCVCD) was formed to act as the local liaison with the U.S. Army Corps of Engineers (U.S. ACE) for designing flood control measures. Beginning in 1981, a nearly 17-mile-long section of Mill Creek was channelized with further planned work being halted in 1991 due to a lack of funding. Further flooding occurred in 1998 and 2001. The U.S. ACE initiated a study in 1998 to complete the unfinished 1981 project, but this was never realized due to the failure to provide local cost sharing. A deep tunnel alternative was rejected due to the cost. In 2006, the City of Cincinnati acquired permanent conservation easements on all MVCD properties under the Mill Creek Greenway program.

The habitat modifications in the mainstem consist of traditional channelization accomplished by excavating and widening the natural channel to a trapezoidal shape. Shorter reaches of Mill Creek are encased in a concrete channel beginning approximately 1 km below Center Hill Rd. (RM 7.3) extending to 0.1 km above Clifton Ave. (RM 5.5). The remaining channelized segments are mix of unreinforced and reinforced banks with the latter consisting of concrete, rip rap, or revetments. The lower portions of some tributaries have also been encased in concrete channels. Encroachment of land uses on the riparian zone is commonplace and results in bank instability and the loss of tree cover. Some habitat improvements have been attempted and include the construction of artificial riffles in the mainstem and the removal of low head dams.

RESULTS and DISCUSSION

Chemical/Physical Water Quality

Chemical/physical water quality in the 2021 Mill Creek study area was characterized by grab sample data collected from the water column six (6) times at each site during base flows and within a June 16-October 15 seasonal index period. Continuous measurements were made with Datasondes over 3-4 consecutive day periods at selected mainstem sites in late July and early August. Sediment chemistry was determined from samples collected at all mainstem and selected tributaries in mid-October.


The results were evaluated by assessing exceedances of criteria in the Ohio WQS, by exceedances of regionally derived biological effect thresholds (MBI 2015) for parameters that lack formal criteria in the WQS, and by exceedances of probable and threshold effect levels for sediment chemistry (MacDonald et al. 2000). The chemical/physical results also serve as indicators of exposure and stress and in support of the biological data for assessing the attainment of aquatic life uses and assigning associated causes and sources for impairments. Bacteria data were collected by grab samples at all sites and were used primarily to determine the status of recreational uses in accordance with the Ohio WQS. Ohio EPA protocols for determining attainment of the applicable designated recreational use were followed.

Flow Regime

The flow regime in the Mill Creek mainstem during the period May 1 – October 31 is depicted in Figure 7 for the years 2011, 2013, 2016, and 2021 based on the gauge operated by the U.S. Geological Survey at Carthage (RM 10.0). These are recent years with bioassessment data in Mill Creek and each represents a slightly different periodicity of both high and low flows. What is consistent between years is a high degree of flashiness as depicted by flow spikes of 10-100 times the summer base flows, which is typical of an urban watershed. The lowest flows were generally at or above the median flow which is more than 6 times less than the 10th percentile flow and less than two times higher than the 80th percentile flow. What are referred to herein as normal summer-fall flows are approximated by the statistical median (50th percentile) flows that vary somewhat throughout this time period. All sampling was avoided during high flow events and was not resumed until normal base flows returned. Flows in 2021 consistently fluctuated with roughly 50% of them falling below the 10th percentile flow setting it apart from the other three years in Figure 7. Peak flows occurred in June and July 2021 following significant precipitation events.

Water Column Chemistry

Water quality was assessed by grab samples collected at all sampling locations six times during the summer-fall index period. Parameter groupings included field, demand, ionic strength, nutrients, heavy metals, and organic compounds. Continuous measurements over 3-4 consecutive day periods were made at all mainstem sites (excepting the downstream most sites influenced by the Ohio River) for D.O. (mg/l), pH (S.U.), conductivity (μ S/cm), and temperature

Figure 8. Flow measured at the USGS gauge at Carthage (RM 10.0) during May 1-October 31 during 2011, 2013, 2016, and 2021. The median, 80%, 10%, and $Q_{7,10}$ flows are indicated on each hydrograph.

(°C) with YSI Datasonde continuous recorders during July 11-15 and July 20-22, 2021.

Water Quality Criteria Exceedances

Assessing exceedances of water quality criteria was done for parameters that have formal criteria codified in the Ohio WQS. For the 2021 Mill Creek survey this included criteria for the protection of aquatic life and for recreational uses.

Ohio WQS Aquatic Life Criteria Exceedances

Measured exceedances of aquatic life water quality criteria for in the Ohio WQS were few and limited to dissolved oxygen (D.O.) and temperature (Table 5). All except six (6) of the D.O. exceedances and all of the temperature exceedances were measured with the Datasondes and only at the sites at which they were deployed. The other D.O. exceedances were grab sample values below the 4.0 mg/l MWH minimum at two locations in the middle mainstem (RM 6.8 and 6.45), three sites in Cooper Creek, and the site in the unnamed tributary to Cooper Creek. Three samples in Cooper Creek had extremely low D.O. values that exceeded the MWH minimum of 3.0 mg/l. The single TKN exceedance was of the MMH maximum criterion of 0.51 in Lick Run (RM 1.7).

Exceedances of Biological Effect Thresholds

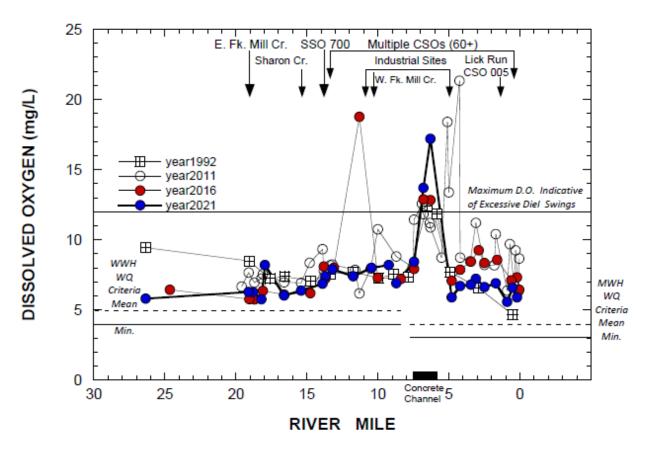
For parameters that do not have formal criteria codified in the Ohio WQS, biological effect thresholds were employed to determine the risks to attainment of aquatic life uses. The thresholds developed as part of the Integrated Prioritization System (IPS) Documentation and Atlas of Biological Stressor Relationships for Southwest Ohio (MBI 2015) were used to assess conventional, ionic strength, and nutrient parameters. These "IPS thresholds" are used in place of the Ohio EPA (1999) Appendices to Association Between Nutrients and the Aquatic Biota of Ohio River and Streams the thresholds from which were employed in a similar fashion in the 2011-16 MSDGC service area watershed assessments. The IPS thresholds are a more robust analysis of biological stressor thresholds, especially in light of the Ohio EPA (1999) dataset being rather sparse in the Interior Plateau ecoregion. The IPS thresholds also offer discrete goals that are directly linked to the codified biological criteria and their application in the determination of aquatic life use attainment and the response to a finding of attainment and findings of nonattainment³. The results for selected parameters are compared to the IPS threshold goals that align with the applicable aquatic life use and stream size category and color coded in keeping with the hierarchy of the Ohio tiered aquatic life uses. The results are also graphically depicted along the Mill Creek mainstem and compared to available results using the Ohio EPA 1992 results as a historical baseline.

Nutrients were assessed using the draft Stream Nutrient Assessment Procedure (SNAP; Ohio EPA 2015b) which is a "combined criterion" consisting of the fish and macroinvertebrate biological criteria, the diel D.O. flux, benthic chlorophyll α , and total nitrate and phosphorus. Lastly, sediment chemical data was assessed using the threshold and probable effect levels of MacDonald et al. (2000).

³ OAC 3745-1-07(A)(6)(a) describe the options for a finding of full attainment and (A)(6)(b) for a finding of non-attainment.

38

Table 5. Exceedances of water quality criteria for aquatic life based on grab sampling and continuous monitoring in the 2021 Mill Creek study area.

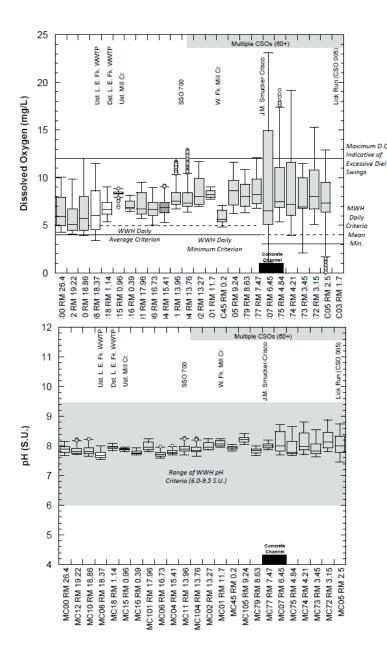

continuous n	nonitoring in the	2021 Will Creek	
Site ID	River Mile	Aquatic Life Use	Parameters (Values) Exceeding Ohio Aquatic Life Criteria ¹
		Mill Creek – WI	WH Reach
MC00	26.4	WWH	
MC12	19.22	WWH	
MC10	18.86	WWH	
MC08	18.37	WWH	Temperature (31.0°C)
MC101	17.96	WWH	
MC06	16.73	WWH	
MC04	15.41	WWH	
MC11	13.96	WWH	
MC104	13.76	WWH	
MC02	13.27	WWH	
MC01	11.7	WWH	
MC80	10.48	WWH	
MC105	9.24	WWH	
MC79	8.63	WWH	
MC77	7.47	WWH	
		Mill Creek – MI	NH Reach
MC09	6.9	MWH-C	D.O. (13.7)
MC07	6.35	MWH-C	D.O. (17.19); Temperature (30.5°C)
MC75	5.1	MWH-C	Temperature (30.8°C)
MC74	4.3	MWH-C	Temperature (32.2°C)
MC73	3.45	MWH-C	
MC72	3.1	MWH-C	Temperature (31.4°C)
MC05	2.5	MWH-C	Temperature (31.7°C)
MC03	1.7	MWH-C	
MC71	0.7	MWH-C	
MC70	0.3	MWH-C	
MC69	0.05	MWH-C	
		East Fork Mil	ll Creek
MC18	1.2	WWH	
MC15	1	WWH	
MC14	0.7	WWH	

		Aquatic Life	Parameters (Values) Exceeding Ohio
Site ID	River Mile	Use	Aquatic Life Criteria ¹
MC16	0.1	WWH	- 4-
		Cooper Cr	еек
MC111	3.57	WWH	
MC112	3.42	WWH	D.O. (2.44)
MC113	2.84	WWH	D.O. (1.28)
MC32	2.59	WWH	
MC28	2.13	WWH	D.O. (2.54)
MC118	1.58	WWH	
MC119	0.44	WWH	
	Unnamed	Tributary to Coo	per Creek @RM 2.80
MC114	0.55	WWH	D.O. (1.49)
		West Fork Mil	ll Creek
MC45	0.2	WWH	
		King's Ru	ın
MC109	1.11	PHW3A	
	Unnamed Tr	ributary to West	Fork Creek @RM 1.24
MC97	1.49	PHW3A	
		Lick Rui	1
MC108	1.7	PHW2	
MC107	0.98	MWH-C	
MC106	0.45	MWH-C	

Conventional and Demand Parameters

This category includes D.O., temperature, pH, ammonia-N, and BOD₅. The D.O. results include both grab and continuous data. D.O. values from daytime grab samples, as expected, did not reveal any exceedances of the average or minimum criteria for either the WWH or MWH uses (Figure 9). Two averaged values that exceeded the maximum D.O., which is indicative of potentially excessive diel swings, occurred at two sites (RM 6.45 and 6.80) in 2021. High values were also observed further downstream in 2011 and all years had values >10 mg/l in the concrete channel reach.

Continuous D.O. data provided the most complete characterization of the D.O. regime in Mill Creek in 2021 (Figure 10, upper left). The results revealed multiple exceedances of the minimum D.O. criterion at single sites in Mill Creek. Excessively wide diel swings >10-20 mg/L


Figure 9. Mean dissolved oxygen (D.O.) at Mill Creek mainstem sites in 1992, 2011, 2016, and 2021. The average and minimum criteria for the WWH and MWH uses are shown as dashed and solid lines. The D.O. concentration that indicates excessive diel swings is depicted as a black solid line at 12.0 mg/L.

were evident in the upper portion of the MWH reach being widest in the concrete channel part of that segment. This effect slowly subsided downstream but remained wider than in the WWH segment. These results clearly illustrate the role that the highly modified concrete channel habitat plays in exacerbating the effect of nutrients that is much less apparent in the comparatively better habitat in the upstream reaches.

Continuous temperature data revealed consistent exceedances of the maximum criterion applicable to the Mill Creek mainstem downstream from the concrete channel and a single site in the WWH reach upstream of the concrete channel in 2021 (Figure 12). The exceedances occurred at the same site where the excessive D.O. and pH swings started. This places the increased temperature in the shallow portion of the concrete channel that is also exposed to full sunlight, which contributes to the warming of Mill Creek temperatures in the MWH reach.

Continuous pH data revealed no exceedance of the maximum of 9.0 S.U. This parameter can also exhibit a diel swing related to increased algal activity spurred by excessive nutrients. Wide swings were observed in the MWH segment beginning in the concrete channel and continuing

MBI/2022-6-8 Mill Creek Bioassessment 2021 August 31, 2022

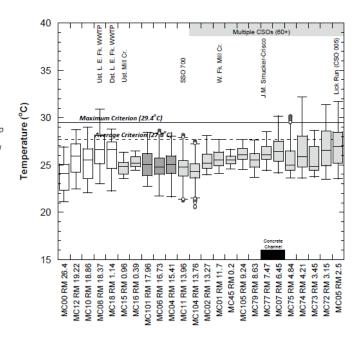


Figure 10. Box-and-whisker plot of continuous D.O. (upper left), temperature (upper right), and pH (lower left) from Datasonde continuous recorders at 24 sites in the mainstem of Mill Creek and the lower East Fork during July 11-15 and July 20-22, 2021. The WWH and MWH daily average and minimum criteria and IPS thresholds are indicated by dashed and solid lines. Major discharges and tributaries are indicated across the top.

downstream (Figure 10; lower left). These results mirrored the diel D.O. data and both are the result of the modified habitat which is exacerbating the effect of nutrients.

5-day biochemical oxygen demand (BOD₅) values in 2021 were at or below the minimum detection level (MDL) at all mainstem sites, except for the most upstream site at RM 26.4 (MC00; Figure 11, upper). This is a consistent reduction in values observed in 1997, 2011, 2013, and 2016 and is a positive indication of decreased loadings of carbonaceous materials. All values were well below the IPS thresholds.

E. coli is included here as an indicator of organic enrichment from raw sewage and urban nonpoint source runoff in addition to its primary role as the indicator for recreational use impairment. As stated in the Recreational Use summary earlier, *E. coli* exceeding the PCR criteria were ubiquitous in the 2021 study area. However, levels that exceed the recreational criteria do not necessarily indicate significant inputs of raw sewage but could rather indicate non-human sources in urban stormwater. *E. coli* levels that far surpass the recreational criteria (>10,000 cfu/100 mL) increasingly indicate raw sewage. The mean values exceeded the STV criterion below the East Fork and approached the SCR criterion of 1030 cfu/100 mL downstream from SSO 700 (Figure 11, lower). Maximum values approaching and exceeding 100,000 cfu/100 mL, an indication of raw sewage inputs, occurred at the first two locations below SSO 700. Both mean and maximum values declined with distance downstream, but with some maximum exceeding the 10,000 cfu/100 mL value. Mean and maximum values increased downstream from the concrete channel exceeding the PCR STV criterion and the 10,000 cfu/100 mL value to the Ohio River backwater effect.

Ammonia-N is also included here as a conventional parameter as it has, along with BOD₅, been the target of point source controls of sewage treatment discharges and has shown historic declines in Ohio rivers and streams since the early 1990s. The 2021 results show ammonia-N below the MDL of 0.05 mg/l at all mainstem sites (Figure 12; upper left). These results, along with the 2011 and 2016 results, represent a significant and continued improvement compared to 1992 and 1997. The source of ammonia-N in those earlier years was the East Fork and presumably the Butler Co. Upper Mill Creek WRF prior to treatment upgrades. A second peak of ammonia-N occurred in 1992 beginning in the concrete channel which also received effluent from the former Procter and Gamble plant discharge. The reductions in ammonia-N are the result of improved wastewater treatment at point source discharges.

Nutrient Related Parameters

Total phosphorus in the Mill Creek mainstem declined markedly between the 1992 and 1997 surveys and the 2011 survey (Figure 12; upper right). Total P also decreased between 2016 and 2021 to levels less than one-third of the much higher levels in 1992 and 1997. The longitudinal pattern clearly points to the East Fork Mill Creek and the Butler Co. Upper Mill Creek WRF as the primary source of these values – it was independent of all other sources. The 2011 values were all less than the IPS biological effect threshold but exceeded it between the East Fork confluence downstream through the WWH segment. All 2021 values were well below the higher MWH IPS threshold during all years being close to the MDL in 2011 and 2016.

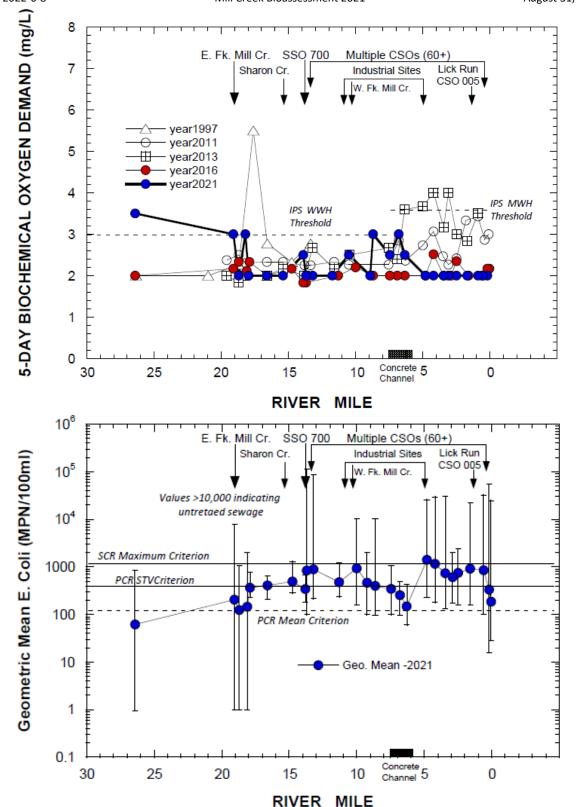
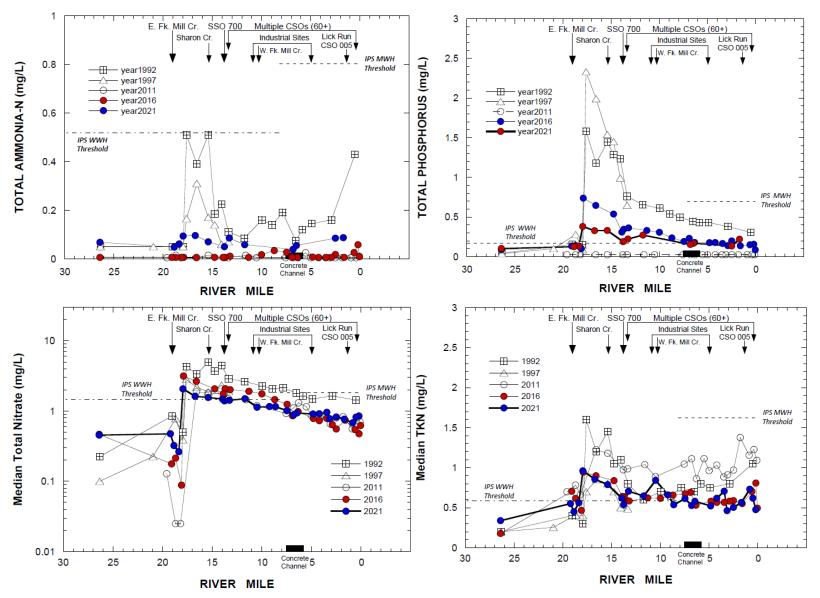



Figure 11. Mean 5-day BOD in 1997, 2011, 2013, 2016, and 2021 (upper) and E. coli mean, maximum, and minimum values in 2021 at Mill Creek mainstem sites. The IPS biological effect thresholds for the WWH and MWH uses are shown as dashed lines for BOD and the PCR geometric mean, STV, and SCR criteria for E. coli are shown as dashed and solid lines.

Figure 12. Median total ammonia-N (upper left), total phosphorus (upper right), total nitrate-N (lower right), and total Kjeldahl nitrogen (lower right) at Mill Creek mainstem sites in 1992, 1997, 2011, 2016, and 2021 based on grab samples. The WWH and MWH IPS thresholds are indicated by dashed and solid lines. Major discharges and tributaries are indicated across the top.

The mean total nitrate-N exceeded the WWH IPS threshold in the Mill Creek mainstem between the East Fork confluence and RM 11.7 (MC 01; Figure 12, lower left). All except one site were in the fair range. The three sites below the Butler Co. Upper Mill Creek WRF in the East Fork were all very poor values. As with total P, the longitudinal pattern indicates the source of nitrate-N enrichment is the East Fork and the Butler Co. Upper Mill Creek WRF as the source. Mean nitrate-N values declined through the MWH segment to below the IPS threshold.

Mean TKN values exceeded the WWH IPS threshold in the WWH segment of Mill Creek beginning with the site immediately downstream from the East Fork, returning to good at the site immediately upstream from the East Fork, and sporadically exceeding the threshold downstream from the East Fork to the MWH segment (Figure 12, lower right). Similar to total P and nitrate, TKN was elevated above the WWH IPS threshold at all three sites in the East Fork below the Butler Co. Upper Mill Creek WRF with two fair and one poor value.

Nutrient Parameters/SNAP Assessment

The Stream Nutrient Assessment Procedure (SNAP) developed by Ohio EPA (2015b) was first used to assess the overall effects of nutrient enrichment in the Mill Creek mainstem (19 sites excluding the Ohio River influenced sites), the lower East Fork (4 sites), and the West Fork (1 site) in 2016. However, the SNAP analysis has been improved since that time, having been applied in other places, thus reducing direct comparisons between 2016 and 2021. The SNAP procedure requires continuous D.O. data for determining the diel D.O. flux (Figure 10) and benthic chlorophyll a biomass in addition to the primary nutrients total P and nitrate-N. BOD, TKN, and SSC are included as parameters that can be influenced by the effects of nutrient enrichment (Miltner 2018). As a result, the analysis was performed at 24 sites.

The IPS biological effect thresholds (MBI 2015) were used to assess all of the nutrient related and related conventional and demand parameters (Table 6). The IPS thresholds are portrayed as goals for each parameter that correspond to the attainment of the Ohio biological criteria for the tiered aquatic life uses (e.g., EWH, WWH, and MWH) and three states that depart from those criteria as fair, poor, and very poor. The ambient results were color coded in accordance with the IPS narrative benchmarks – exceptional (EWH), blue; good (WWH), green; fair (MWH), yellow; poor (LRW), orange; very poor (no use), red.

The SNAP method recognizes that the effects of nutrients on aquatic life are neither direct nor linear, but dependent on a number of factors such as low stream flow duration, stream habitat characteristics, shading, retention, aquatic life use (i.e., sensitivity to nutrient impacts) and the timing and delivery of nutrients to a stream or river. Table 6 summarizes the data used to identify sites that:

- 1) are attaining aquatic life uses and not threatened by nutrients,
- 2) are attaining aquatic life uses, but may be threatened by nutrients,
- 3) are impaired, but cause(s) other than nutrients are major limiting factors,
- 4) are impaired, with nutrients as one of multiple contributing causes, or
- 5) are impaired, with nutrient enrichment as a primary cause.

Two (2) sites (MC00 and MC105) in the WWH designated upstream reach of Mill Creek attained their respective aquatic life use biocriteria and were not threatened by nutrients. Six (6) sites were impaired, but by causes other than nutrients. The five (5) site downstream from the East Fork confluence were impaired with nutrients as a likely contributing cause with fair exceedances of IPS thresholds. Among the nutrient parameters mean total phosphorus exceeded the WWH IPS threshold at all except one site in the WWH reach downstream from

Table 6. Conventional, demand, and nutrient parameters in the 2021 Mill Creek study. Mean ambient values are color coded by their IPS ranges that correspond to tiered uses and narrative quality; blue – EWH (exceptional); green – WWH (good); yellow – MWH (fair); orange – LRW (poor); red – very poor quality. IPS threshold goals for each site are in the column to the right of each value.

			I			I																		
									Chloro	phyll-a	BOD	Gra	b Dissolv	ed Oxyg	en ^a	Conti	Continuous Dissolved Oxygen ^a							
		Drainage							Danahia	C4									-	Total Kjeldahl				
Cita ID	Fish/Macro.	Area	Aq. Life		N 4 L de		ALLIC CASA	OHE	Benthic	Sestonic	BOD	Min.	Mean	Max	Max.	Min.	Mean	Max.	D.O.	Nitrogen	Conc.	phorus	Nitrate-N	Occurs II Account of Nichtland Efforts
Site ID	River Mile	(sq. mi.)	Use	IBI	IVIIWD	ICI	ALUS Status	QHEI	(mg/m²)	(mg/m³)	(mg/L)	(mg/L)		(mg/L) <i>ek (</i> 23-00				(mg/L)	Swing	(mg/L)	(mg/L)	(mg/L)	(mg/L)	Overall Assessment of Nutrient Effects
MC00	26.40/26.00	4.4	WWH	43	NA	44	Attaining	69.0	28.40	3.20	3.00	5.03	5.96	6.99	1,96	4.25	6.43	10.07	5.59	0.41	12.7	0.111	0.49	Attaining and not threatened by nutrients
MC12	19.22/19.10	26.7	WWH	30*	6.2*	42	Impaired	69.3	34.10	4.81	2.67	5.60	6.41	7.53	1.93	4.10	5.73	9.83	5.67	0.56	14.0	0.111	0.50	Impaired, but cause(s) other than nutrients
MC10	18.86/18.70	27.0	WWH	28*	6.2*	44	Impaired	70.5	18.30	4.25	2.17	5.10	6.33	7.70	2.60	3.94	6.35	12.05	8.11	0.50	15.6	0.145	0.33	Impaired, with nutrients as a likely contributing cause
MC08	18.37/18.10	27.3	WWH	34*	6.6*	44	Impaired	83.5	49.50	4.29	2.50	3.40	5.40	8.11	4.71	3.38	6.61	11.49	7.55	0.64	17.4	0.145	0.30	Impaired, with nutrients as a likely contributing cause
MC101	17.96/17.96	42.2	WWH	31*	6.4*	40	Impaired	65.0	37.20	3.17	2.17	6.48	7.69	8.75	2.27	5.69	7.22	9.48	3.63	1.13	11.0	0.521	2.00	Impaired, with nutrients as a likely contributing cause
MC06	16.73/16.60	50.5	WWH	22*	5.1*	40	Impaired	56.0	27.60	1.79	2.00	5.10	6.66	9.04	3.94	5.02	6.74	8.97	3.84	0.94	13.0	0.420	1.79	Impaired, with nutrients as a likely contributing cause
MC04	15.41/15.10	61.3	WWH	24*	3.7*	40	Impaired	50.5	30.40	1.95	2.00	5.15	6.15	7.26	2.11	5.30	6.89	9.16	3.45	0.83	20.4	0.404	1.46	Impaired, with nutrients as a likely contributing cause
MC11	13.96/13.90	68.8	WWH	35*	7.2*	40	Impaired	65.5	94.50	3.99	2.67	5.10	7.05	9.14	4.04	6.73	7.98	11.70	4.85	0.74	8.1	0.358	1.49	Impaired, but cause(s) other than nutrients
MC104	13.76/13.70	71.6	WWH	36 ^{ns}	6.7*	46	Impaired	75.8	54.90	2.66	2.50	5.48	7.29	9.00	3.52	6.36	7.95	12.93	6.36	1.05	11.7	0.362	1.43	Impaired, but cause(s) other than nutrients
MC02	13.27/13.10	72.3	WWH	31*	5.9*	46	Impaired	55.5	53.00	3.82	2.33	6.50	7.91	10.29	3.79	6.99	8.55	11.70	4.60	1.21	12.2	0.374	1.56	Impaired, but cause(s) other than nutrients
MC01	11.70/11.70	73.9	WWH	39 ^{ns}	7.2*	42	Impaired	69.5	69.10	2.59	2.00	6.09	7.23	7.90	1.81	7.72	8.27	9.03	1.23	0.80	9.9	0.301	1.46	Impaired, but cause(s) other than nutrients
MC105	9.24/9.24	119.0	WWH	38 ^{ns}	7.8 ^{ns}	38	Attaining	71.8	48.10	4.34	2.33	5.30	7.84	9.18	3.88	6.24	8.60	11.61	5.18	0.69	18.6	0.222	1.10	Attaining and not threatened by nutrients
MC79	8.63/8.68	120.0	WWH	35*	8.1	40	Impaired	75.5	47.90	4.70	2.50	6.40	7.73	9.50	3.10	6.29	8.19	10.85	4.37	0.59	8.9	0.236	1.24	Impaired, but cause(s) other than nutrients
													Mill Cree	k (23-001) - 2021	- MWH-C	Reach							
MC77	7.47/7.65	126.0	MWH-C	40	6.9	38	Attaining	55.0	37.30	4.61	2.50	4.89	8.08	9.95	5.06	6.79	8.69	12.07	5.15	0.68	7.3	0.200	1.01	Attaining, but may be threatened
MC07	6.45/6.35	135.0	MWH-C	28	<u>3.7</u> *	16*	Impaired	38.5	106.00	7.64	3.17	3.53	14.53	17.80	14.27	1.17	9.73	23.09	18.45	0.54	9.9	0.264	1.03	Impaired, with nutrients as a likely contributing cause
MC75	4.84/4.84	139.0	MWH-C		6.5	28	Attaining	49.0	36.10	6.13	2.00	3.96	6.56	10.50	6.54	5.38	8.98	19.20	13.82	0.56	12.9	0.289	0.90	Attaining, but may be threatened by nutrients
MC74	4.21/4.60	141.0	MWH-C	38	7.0	28	Attaining	62.0	70.10	6.58	2.17	4.08	6.61	9.14	5.06	3.95	9.01	19.17	14.74	0.66	12.5	0.286	0.87	Attaining, but may be threatened by nutrients
MC73	3.45/3.60	144.0	MWH-C	34	6.3	44	Attaining	58.5	60.00	5.65	2.17	5.64	7.06	9.80	4.16	2.12	8.02	11.47	9.35	0.68	12.2	0.208	0.93	Attaining, but may be threatened by nutrients
MC72	3.15/3.10	154.0	MWH-C	36	7.3	36	Attaining	58.5	57.90	4.43	2.50	4.80	7.81	10.85	6.05	5.09	8.89	15.28	9.88	0.56	7.6	0.160	0.80	Attaining, but may be threatened by nutrients
MC05	2.50/2.50	156.0	MWH-C	34	6.7	36	Attaining	53.0	46.20	8.46	2.83	5.30	6.60	7.90	2.60	0.03	7.65	12.91	10.18	0.59	10.5	0.170	0.83	Attaining, but may be threatened by nutrients
		1	T											Fork Mill										
MC45	0.20/0.20	36.5	WWH	26*	7.0*	30	Impaired	69.3	20.10	1.67	2.20	4.15	6.23	7.85	3.70	4.85	5.91	7.09	1.80	0.56	8.4	0.154	0.57	Impaired, but cause(s) other than nutrients
14640	1 1 1 1 2 0 0	0.0	140401	22*		1		74.5	20.00	4.00	2.47	- 04		Fork Mill (0.04	2.40	0.40	44.0	0.433	0.40	
MC18	1.14/2.00	9.3	WWH	33*	NA	42	Impaired	71.5	29.00	1.02	3.17	5.04	6.77	8.45	3.41	5.39	6.84	9.04	3.18	0.40	11.0	0.123	0.18	Impaired, but cause(s) other than nutrients
MC15	0.96/1.05	9.3	WWH	34*	NA	30	Impaired	78.0	49.00	1.97	2.17	7.96	8.48	9.09	1.13	6.87	8.38	8.87	1.73	1.18	6.1	0.854	2.27	Impaired, with nutrients as a likely contributing cause
MC16	0.39/0.10	9.6	WWH	28*	NA	36	Impaired	60.5	31.00	1.38	2.00	6.70 >6.0	7.42	8.10	1.40	6.42	7.10	8.15	1.54	0.95 <0.75	5.3 <20	0.942	3.06	Impaired, with nutrients as a likely contributing cause
		Excep		≥50 36-49	<u>></u> 8.9	20.45	Attains WWH	≥75	1100 1 2	A secontable	<2.25				-C F	>6.0			<u><</u> 6.5			< 0.04	<0.44	Attaining and not threatened by nutrients
		Go				 		60-74	≤182 mg/m²	Acceptable	<2.25	5.0-5.9			<u><</u> 6.5	5.0-5.9			>6.5	<u>≥</u> 0.75	<u>></u> 20	0.04-<0.08	0.44-1.10	Attaining, but may be threatened by nutrients
		Fa		28-35	5.8-7.5		Impaired Fair	46-59	182-320 mg/m ²	Enriched Ocean Familie and	<4.00	3.0-4.9			>6.5	3.0-4.9			-		-	0.08-0.131	>1.10-3.60	Impaired, but cause(s) other than nutrients
		Po		18-27		13-19		30-45	>320 mg/m2	Over-Enriched	<u>></u> 4.00	2.0-2.9			>10.0	2.0-2.9			 		-	>0.131-0.40	>3.60-<6.70	Impaired, with nutrients as a likely contributing cause
		Very		≤17	<3.4		Impaired V. Poor					< 2.0				< 2.0						<u>></u> 0.40	>6.70	Impaired, with nutrient enrichment as the cause
		Sou	irce	OEPA	OEPA	OEPA		OEPA	SNAP	SNAP	SNAP	OEPA			SNAP	OEPA			SNAP	SNAP	SNAP	SNAP	SNAP	SNAP

the East Fork and all were fair values. No site upstream from the East Fork confluence exceeded the WWH IPS thresholds. The IPS threshold was exceeded at all three sites in the East Fork below the Butler Co. Upper Mill Creek WRF and all were poor values. Taken together, these results, in combination with the two lower most East Fork sites that were impaired with nutrients as a likely cause and with poor exceedances of IPS thresholds, point back to the Butler Co. Lower East Fork WRF as the source of enrichment. The upstream most site in the MWH designated reach (MC77) attained the MWH biocriteria and may be threatened by nutrients. The next site (MC07) at the upper end of the concrete channel was impaired with nutrients as a likely cause demonstrating the effect of the severe habitat modifications. The remaining sites in the MWH reach all attained, but threated by nutrients likely as a result of the marginal habitat and the concrete channel rapidly exporting enrichment effects downstream. All sites in the MWH reach of Mill Creek were well below the higher MWH IPS benchmark, and most below the WWH IPS benchmark. The single site on the West Fork was impaired by non-nutrient causes.

Mill Creek receives nutrients in runoff that originate from adjacent land uses (largely urban and suburban) as well as carbonaceous sources (CSOs and SSOs) that each contribute to the altered D.O. dynamics in the receiving streams. Benthic and sestonic chlorophyll concentrations were generally low to very low at most sites, as was BOD₅. The WWH designated reach of Mill Creek, other than the upstream most headwater site that was in full attainment of the WWH aquatic life use, had fish IBI and MIwb scores that that were impaired and in the fair range. However, three (3) sites were in the range of non-significant departure from the IBI biocriterion. Several sites with minimum D.O. values below 5 mg/L and two sites that had D.O. swings of >6.5 mg/L (MC10 and MC08) suggesting that nutrients may contribute to impairment, but were accompanied by urban stressors that are also influential. Total phosphorus concentrations were poor downstream of the Butler Co. Upper Mill Creek WRF and remained in the poor range in the remainder of that stream. The MWH designated reach of Mill Creek starts as a highly modified concrete lined channel with all except the concrete channel portion attaining the MWH modified use. This reach is predominated by species and taxa that are more tolerant of elevated nutrients and altered D.O. regimes. Nevertheless, the upper part of this reach at MC07 and MC09 had extremely wide D.O. swings of >10-20 mg/L and multiple sites with D.O. levels below 3 mg/L. This is the net result of the shallow concrete lined channel that exposes shallow depths to full sunlight and increases the retention time allowing algae to accumulate to higher levels than in adjacent reaches. Most sites in this reach attained the MWH use, but are considered threatened by nutrients because of the highly modified habitats among other sources of stress via stormwater and CSO discharges.

Mill Creek Tributary Conventional, Demand, and Nutrient Parameters

Table 7 includes the results of selected demand and nutrient related parameters in the 2021 Mill Creek study area including six (6) tributaries. The most comprehensively sampled tributary was Cooper Creek which was sampled by MBI in the lower subwatershed and the Hamilton Co. SWCD in the upper reached and tributaries. The five (5) upstream most sites in Cooper Creek subwatershed and the unnamed tributary (MC114) had low D.O. values that exceeded the 4 mg/L minimum with all except one sites being classified as PHWH3A or B, thus intermittent flows are the likely cause of the low D.O. values. IPS threshold exceedances were fair at some sites for total P and nitrate-N at MC111 and four TKN values between MC112 and MC28. All other results were within the good or exceptional ranges of each including very low sestonic chlorophyll a values. Among the remaining tributaries, the upstream site in Lick Run (MC 108) had very poor BOD, TKN, and sestonic chlorophyll a levels likely as a result of intermittent flows through this artificially constructed stream. Only two fair values for D.O. in Kings Run and total P in the unnamed tributary to West Fork Creek, otherwise all values were good or exceptional.

Urban Parameters

Urban parameters include ionic strength measures such as conductivity, total dissolved solids, total chlorides, and total sulfates and selected heavy metals such as copper, lead, and zinc. These parameters are either commonly detected and/or elevated above effect levels in urban areas. This is mostly the result of stormwater runoff but can also be indicative of industrial and municipal sources of pollution. The IPS biological effect thresholds (MBI 2015) were used to

Table 7. Mean values for selected demand and nutrient related parameters in the 2021 Mill Creek study area including the Mill Creek and East Fork mainstem and selected Mill Creek tributaries. ALU is the applicable aquatic life use and IPS are the IPS thresholds that apply to each site.

	1								1				1				
															Benthic	Sestonic	
									Mean	Total			Mean	Total	Chloro-	Chloro-	
	River		Mear	n D.O.	Mean	BOD ₅	Mear	TKN	Amm	nonia	Mean	Nitrate	Phosp	horus	phyll a	phyll a	
Site ID	Mile	ALU	(mg/l	L)/IPS	(mg/	L)/IPS	(mg/L	.)/IPS	(mg/l	.)/IPS	(mg/l)/IPS	(mg/l	.)/IPS	(mg/m ²)	(µg/mL)	
			<u> </u>		, ,		Aill Creel			,-			, ,				
MC00	26.4	wwn	5.81		3.5	2.48	0.34	0.51	0.07	0.31	0.454	0.96	0.10	0.17	28.4	1.57	
MC12	19.22	WWH	6.28		3.0		0.55		0.05	0.01	0.475	0.50	0.16		34.1	2.94	
MC10	18.86	WWH	6.27		2.0		0.45		0.05		0.322		0.13		18.3	3.34	
MC08	18.37	WWH	5.76		3.0		0.43		0.05		0.264		0.13		49.5	2.67	
MC101	17.96	WWH	8.20		2.0		0.96		0.00		2.065		0.13		37.2	2.67	
		WWH															
MC06	16.73	WWH	6.03		2.0		0.86		0.10		1.620		0.33		27.6	1.04	
MC04	15.41		6.38	F 00	2.0		0.79		0.07		1.560		0.33		30.4	1.84	
MC11	13.96	WWH	6.87	5.00	2.5	2.96	0.62	0.58	0.06	0.53	1.480	1.38	0.25	0.17	94.5	1.47	
MC104	13.76	WWH	7.40		2.0		0.54		0.06		1.395		0.21		54.9	2.67	
MC02	13.27	WWH	7.90		2.0		0.71		0.09		1.420		0.22		53	3.47	
MC01	11.7	WWH	7.40		2.0		0.65		0.06		1.499		0.27		69.1	2.07	
MC80	10.48	WWH	8.00		2.5		0.84	0.08		1.135		0.24		-	5.73		
MC105	9.24	WWH	8.20		2.0		0.66		0.06		1.160		0.18		48.1	2.14	
MC79	8.63	WWH	6.91		3.0		0.54		0.09		1.155		0.18		47.9	4.74	
MC77	7.47	WWH	8.43		2.5		0.61		0.08		1.012		0.16		37.3	4.54	
						٨	Лill Creel	c - MWH	Reach								
MC09	6.8	MWH	13.70		3.0		0.53		0.04		0.877		0.15		-	10.41	
MC07	6.45	MWH	17.19		2.5		0.58		0.06		0.939		0.17		106	6.14	
MC75	4.84	MWH	5.90		2.0		0.52		0.04		0.908		0.25		36.1	5.88	
MC74	4.21	MWH	6.71		2.0		0.62		0.06	0.83	0.913		0.22		70.1	6.41	
MC73	3.45	MWH	6.80		2.0		0.81		0.04		0.959		0.20		60	6.14	
MC72	3.15	MWH	7.22	4.00	2.0	3.35	3.35 0.50	1.63	0.07		0.777	1.70	0.12	0.70	57.9	5.08	
MC05	2.5	MWH	6.63		2.0		0.56		0.09		0.822		0.13		46.2	7.21	
MC03	1.69	MWH	6.90		2.0		0.58 0.77 0.72		0.09		0.765		0.22		-	6.41	
MC71	0.83	MWH	5.58		2.0			0.77		0.13		0.680		0.16		-	7.48
MC70	0.5	MWH	6.59		2.0			0.72		0.08		0.816		0.10		-	7.21
MC69	0.21	MWH	5.90		2.0		0.54		0.06		0.851		0.11		-	4.74	
							East Fo	rk Mill C	reek								
MC18	1.14	WWH	6.64		3.5		0.32		0.05		0.121		0.12		29	1.00	
MC15	0.96	WWH	8.30		2.0		1.00		0.07		2.780		0.51		49	1.50	
MC14	0.66	WWH	6.73	5.00	2.0	2.96	0.96	0.58	0.07	0.53	2.250	1.38	0.43	0.17	-	1.00	
MC16	0.39	WWH	7.55		2.0		0.90		0.09		2.885		0.66		31	1.00	
WEIG	0.55	*******	7.55			oner Cre	ek (Ros	moune		M 1A 05			0.00		31	1.00	
MC111 (MD 1)	3.57	WWH	3.17		2.0	Sper Cre	0.55	oyne	0.06	14.03)	1.400		0.20		_	1.00	
MC111 (MR-1) MC112 (MR-2)	3.42	WWH	2.44		2.0		0.55		0.05		0.634		0.20			1.00	
· · · · · · · · · · · · · · · · · · ·		WWH	1.28		2.0								0.16		_		
MC113 (MR-3)	2.84			E 00		2.06	1.09	0.50	0.14	0.53	1.235	1 20		0 17	-	1.00	
MC32 (MR-5)	2.59	WWH	3.29	5.00	2.0	2.96	0.60	0.58	0.02	0.53	0.194	1.38	0.12	0.17		1.00	
MC28 (MR-6)	2.13	WWH	2.54		2.0		0.69		0.03		0.129		0.11		-	1.00	
MC118	1.58	WWH	7.27		2.0		0.22		0.06		0.251		0.12		-	1.00	
MC119	0.44	WWH	6.53		2.0		0.26	1.15	0.07		0.400		0.11		-	1.84	
				Unamea		-	_	-									
MC114 (MR-4b)	0.55	WWH	1.49	5.00	2.0	2.96	0.72	0.58	0.04	0.53	0.866	1.38	0.18	0.17	-	1.00	
							West Fo	rk Mill (Creek								
MC45	0.2	WWH	6.55	5.00	2.0	2.96	0.51	0.58	0.05	0.53	0.520	1.38	0.15	0.17	20.1	1.00	
							Ki	ngs Run									
MC109	1.11	PHW3A	4.75	5.00	2.5	2.96	0.20	0.58	0.06	0.53	0.412	1.38	0.17	0.17	-	1.00	
					Unna	med Trib	utary to	West Fo	ork Creel	k @RM :	1.24						
MC97	1.49	PHW3A	7.05	5.00	2.5	2.96	0.34	0.58	0.06	0.53	0.766	1.38	0.24	0.17	-	1.00	
								ick Run							1		
MC108	1.7	PHW2	8.13		8.0		1.72		0.05		0.043		0.43		_	93.60	
MC106	0.98	MWH	8.20	4.00	4.5	2.48	0.41	0.51	0.03	0.31	0.397	0.96	0.43	0.70	-	2.19	
MC107	0.45	MWH	9.80		2.5	2.40	0.41	0.51	0.09	0.51	0.035	0.50	0.10	5.70	_	1.57	
IVICIO	0.43	1414411	3.00		2.3		0.30		0.03		0.033		0.12			1.37	

assess all the urban parameters similar to the preceding analyses of nutrient and demand parameters (Table 8). None of these parameters exceeded any Ohio water quality criteria.

Conductivity was measured by grab sampling at all 2021 study area sites and as specific conductance by Datasonde continuous monitors deployed in the mainstem of Mill Creek and the lower East Fork (Figure 13). The longitudinal results show a sharp increase downstream of the East Fork and gradually declining downstream along the length of Mill Creek. The 2011, 2013, 2016, and 2021 results were each well in excess of both the WWH and MWH IPS thresholds at all locations except the lower two miles of Mill Creek. Unlike the reductions demonstrated for conventional, demand, and nutrient parameters, conductivity has increased markedly since 1992. The continuous data (Figure 13) reflect a clear pattern of values indicating the Butler Co. Upper Mill Creek WRF as the primary source of elevated conductivity in Mill Creek. This is the same conclusion reached in 2011 and 2016 showing no changes over the past

Table 8. Mean values for selected urban related parameters in the 2021 Mill Creek study area including the Mill Creek and East Fork mainstem and selected Mill Creek tributaries. ALU is the applicable aquatic life use and IPS are the IPS thresholds that apply to each site.

Site ID	River Mile	ALU	Condu (µS/	cm)	TDS (r Ambie		Total C (mg	g/L)	Total S (mg	;/L)	Total C (μg Ambie	/L)	Total (μg Ambie	/L)	Total (μg Ambie	/L)
Site ID	IVIIIC	ALO	Allible	путь	Allible		II Creek -			щиз	Allible	III/IF3	Allible	iii/ir3	Allible	III/IF3
MC00	26.40	WWH	890	703	526	364	65.0	53	81	119	6.8		6.6		7.5	
MC12	19.22	WWH	710	703	400	30-1	75.0	- 55	38		5.4		13.0		16.3	
MC10	18.86	WWH	705		402		83.5		37		-		10.3		10.1	
MC08	18.37	WWH	730		434		83.0		36		_		10.4		9.8	
MC101	17.96	WWH	1300		758		140.0		225		3.7		9.7		36.4	
MC06	16.73	WWH	1300		764		155.0		210		6.8		10.7		27.2	
MC04	15.41	WWH	1300		746		145.0		200		6.9		12.5		25.0	
MC11	13.96	WWH	1150		662		135.0		165		6.8	8.9	10.8	17.4	21.5	39.3
MC104	13.76	WWH	1150	660	654	384	120.0	59	135	120	7.6		13.6		18.4	
MC02	13.27	WWH	1100		658		120.0		145		7.1		11.5		23.7	
MC01	11.70	WWH	1150		652		125.0		145		6.9		12.0		20.6	
MC80	10.48	WWH	970		508		100.0		120		5.8		4.4		20.5	
MC105	9.24	WWH	1000		586		115.0		135		4.0		6.6		15.5	
MC79	8.63	WWH	1100		626		115.0		135		6.8		11.1		20.6	
MC77	7.47	WWH	1100		618		120.0		125		6.8		9.5		16.9	
						Mi	II Creek -	MWH R	each							
MC09	6.80	MWH	1100		600		120.0		140		-		9.4		15.1	
MC07	6.45	MWH	1000		560		105.0		115		6.8		9.2		12.4	
MC75	4.84	MWH	1100		604		110.0		135		6.9		4.9		17.5	
MC74	4.21	MWH	1050		614		105.0		120		6.4		4.4		15.7	
MC73	3.45	MWH	1050		598		110.0		120		6.5		4.4		17.0	
MC72	3.15	MWH	1050	814	596	428	115.0	75	125	120	6.9	10.4	10.2	26.8	15.0	50.8
MC05	2.50	MWH	1050		576		115.0		125		6.9		8.5		15.7	
MC03	1.69	MWH	1000		566		110.0		120		6.6		4.4		19.0	
MC71	0.83	MWH	1000		512		120.0		130		6.8		8.0		21.9	
MC70	0.50	MWH	570		402		55.5		68		6.0		8.7		17.2	
MC69	0.21	MWH	430		270		32.5		58		5.9		10.2		16.0	
						L	East Fork	Mill Cre	ek							
MC18	1.14	WWH	830		466		86.5		43		5.2		4.9		6.5	
MC15	0.96	WWH	1600	660	944	384	160.0	59	325	120	6.0	8.9	5.0	17.4	40.0	39.3
MC14	0.66	WWH	1450	000	846	304	150.0	33	285	120	5.2	0.5	4.4	17.4	35.5	33.3
MC16	0.39	WWH	1400		846		140.0		270		5.3		4.5		36.0	
					Coop	oer Cree	k (Rossm	noyne Cr	eek RM	14.05)						
MC111 (MR-1)	3.57	WWH	705		380		71.0		64		8.1		13.3		16.4	
MC112 (MR-2)	3.42	WWH	870		470		135.0		61		7.9		13.1		28.8	
MC113 (MR-3)	2.84	WWH	715		388		85.0		46		7.5		18.5		18.0	
MC32 (MR-5)	2.59	WWH	645	660	374	384	69.0	59	37	120	7.0	8.9	15.4	17.4	12.6	39.3
MC28 (MR-6)	2.13	WWH	730		420		65.0		49		7.0		20.4		13.4	
MC118	1.58	WWH	605		346		76.5		31		5.0		-		8.2	
MC119	0.44	WWH	615		358		71.5		35		6.1				11.2	
		1			ributary			•								
MC114 (MR-4b)	0.55	WWH	575	660	334	384	57.5	59	60	120	7.0	8.9	11.3	17.4	18.0	39.3
		1					Vest Forl									
MC45	0.20	WWH	530	660	300	384	51.0	59	18	120	7.0	8.9	5.7	17.4	18.0	39.3
								s Run								
MC109	1.11	PHW3A	840	660	518	384	80.0	59	90	120	-	8.9	9.2	17.4	8.0	39.3
		1							k Creek @		24					
MC97	1.49	PHW3A	800	660	474	384	89.5	59	60	120		8.9	9.2	17.4	9.2	39.3
	4		0.5.5					Run					40.5		0.=	
MC108	1.70	PHW2	900		530		72.0		90		-		12.8		8.5	
MC106	0.98	MWH	970	660	464	384	120.0	59	89	120	-	8.9	18.3	17.4	8.8	39.3
MC107	0.45	MWH	900		416		100.0		79		_		19.7		14.1	

10 years. This pattern has been observed in the continuous data since 2011 and with substantial exceedances of IPS threshold applicable to the Mill Creek and the East Fork.

Total chlorides showed a similar longitudinal and temporal pattern to conductivity (Figure 14) increasing sharply downstream from the East Fork, increasing in 2011, 2016, and 2021 over 1992 and 1997. The 2016 value at MC75 (RM 5.1) was the highest ever recorded (potentially indicative of an unknown source), but this was reduced in 2021. Increases in dissolved solids and chloride have been widely observed in urban watersheds over the past 15-20 years. Most is related to the buildup of deicing salt in the riparian zone and near-surface groundwater, but in Mill Creek a significant portion is discharged by point sources. In addition to conductivity and chloride, total dissolved solids were well in excess of the WWH and MWH IPS thresholds and not returning to those levels until RM 0.5 (Table 8). Sulfates exceeded the WWH IPS thresholds downstream from the East Fork, but persisted only through the WWH segment in Mill Creek.

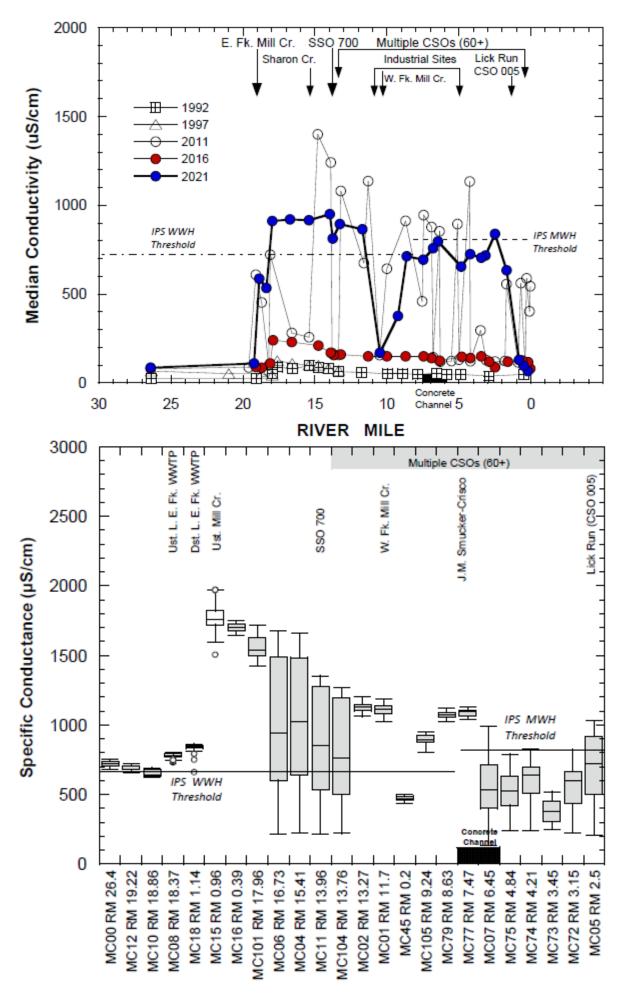
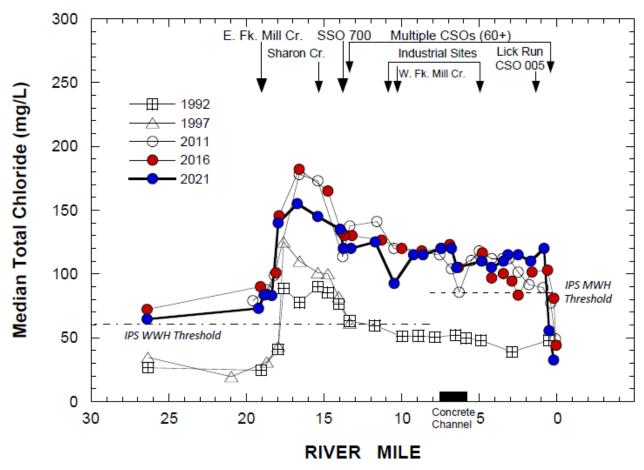



Figure 13. Median conductivity at Mill Creek mainstem sites in 1992, 1997, 2011, 2016, and 2021 based on grab samples (upper). The IPS biological effect thresholds for the WWH and MWH uses are shown as dashed lines. Box-and-whisker plot of continuous specific conductance (lower) from Datasonde continuous recorders at 24 sites in the mainstem of Mill Creek and the lower East Fork during July 11-15 and July 20-22, 2021. The WWH and MWH IPS thresholds are indicated by dashed and solid lines. Major discharges and tributaries are indicated across the top.

Figure 14. Median chloride at Mill Creek mainstem sites in 1992, 1997, 2011, 2016, and 2021 based on grab samples (upper). The IPS biological effect thresholds for the WWH and MWH uses are shown as dashed lines.

In the Mill Creek tributaries there were eight (8) exceedances of very poor or poor thresholds for chloride, TDS, and conductivity with the exception of Lick Run that had six (6) such exceedances including two very poor chloride values in 2021 (Table 8). Cooper Creek had four such exceedances including a very poor chloride at MC112. There were 11 exceedances of the fair threshold for these same parameters in the Cooper Creek subwatershed. Of the heavy metals (copper, lead, and zinc) there were four exceedances of fair IPS thresholds, two values for lead in Cooper Creek and two in Lick Run that only slightly exceeded the WWH threshold and were well below equivalent values that would have exceed the Ohio water quality criteria.

Sediment Chemistry

Sediment samples were collected from 30 sites in the 2021 Mill Creek study area in October and analyzed for heavy metals and organic compounds. The results were screened with the MacDonald et al. (2000) consensus-based levels for potential adverse effects to aquatic life. MacDonald et al. (2000) described two values for sediment metal and organic compounds; a threshold effects concentration (TEC) and a probable effects concentration (PEC), the latter being the more conclusive threshold for the potential for adverse effects to aquatic life. Sediment chemistry has yet to be incorporated into the IPS, but developing those thresholds is an outstanding need for IPS development in the future.

Exceedances of heavy metals were documented for TECs only and among three metals including arsenic (one site only), copper, lead, and zinc (Table 9). All except two of the exceedances occurred in the mainstem between RM 13.27 (MC02) and the mouth at RM 0.05 (MC 69) and in Lick Run. Lead exceedances occurred at nine sites, copper at twelve sites, and zinc at a 15 sites. These are commonly detected metals in urban watersheds and are presumably from urban stormwater and CSOs.

PAH compounds in excess of both TEC and PEC thresholds occurred at 30 sites in the Mill Creek study area beginning at RM 26.4 (MC 00) and extending to the mouth at RM 0.05 (MC 69; Table 10). This included 11 PAH compounds with PEC exceedances being commonplace for benzo(a)pyrene, benzo(ghi)perylene, chrysene, fluoranthene, phenanthrene, and pyrene. TEC exceedances occurred for benzo(b)fluoranthene, benzo(k)fluoranthene, and indeo(1,2,3-

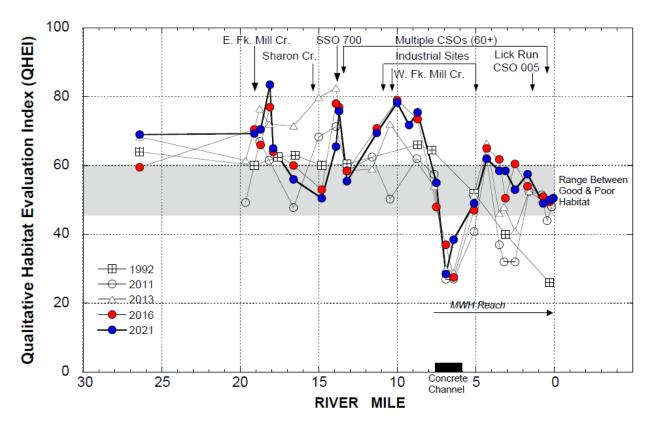
Table 9. Metals in sediments in the 2021 Mill Creek study area. Yellow shaded values exceed the Threshold Effect Concentration (TEC) of MacDonald et al. (2000). No values exceeded the Probable Effect Concentration (PEC).

	1 1			, ,			1
Site ID	RM	Arsenic (mg/kg)	Cadmium (mg/kg)	Copper (mg/kg)	Lead (mg/kg)	Magnesium (mg/kg)	Zinc (mg/kg)
			Mill	Creek			
MC00	26.4	5.2	BD	11.0	9.4	16000	41
MC12	19.22	8.1	BD	17.0	17.0	18000	82
MC10	18.86	12.0	BD	25.0	29.0	21000	120
MC08	18.37	3.4	BD	18.0	12.0	7500	110
MC101	17.96	4.3	BD	12.0	10.0	19000	72
MC06	16.73	5.4	BD	27.0	29.0	12000	150
MC04	15.41	5.1	BD	30.0	26.0	12000	120
MC11	13.96	3.6	BD	15.0	16.0	11000	78
MC104	13.76	4.9	BD	22.0	19.0	12000	100
MC02	13.27	6.4	BD	37.0	30.0	15000	170
MC01	11.7	7.2	BD	21.0	19.0	11000	80
MC80	10.48	6.5	BD	34.0	35.0	15000	140
MC105	9.24	5.1	BD	32.0	34.0	12000	140
MC79	8.63	6.2	BD	32.0	28.0	11000	140
MC77	7.47	7.6	BD	28.0	26.0	21000	130
MC09	6.8	5.0	BD	22.0	30.0	15000	110
MC07	6.45	4.0	BD	18.0	13.0	8700	60
MC75	4.84	8.1	BD	72.0	47.0	13000	210
MC74	4.21	7.0	0.36	62.0	43.0	14000	200
MC73	3.45	6.7	0.63	53.0	38.0	9800	170
MC72	3.15	5.4	BD	49.0	36.0	12000	170
MC05	2.5	5.9	0.31	49.0	51.0	19000	140
MC03	1.69	5.2	0.62	51.0	65.0	8400	170
			East Fork	Mill Creek			
MC18	1.14	3.0	BD	13.0	11.0	7100	54
MC15	0.96	3.5	BD	15.0	11.0	8300	60
MC14	0.66	2.0	BD	9.5	6.6	6800	46
MC16	0.39	1.1	BD	11.0	5.1	4300	56
			West Fork	Mill Creek			
MC45	0.2	5.7	BD	41.0	56.0	7300	140
			Lick	Run			
MC108	1.7	3.4	BD	43.0	80.0	7800	170
MC107	0.45	4.4	BD	26.0	45.0	10000	120

cd)pyrene. Similar exceedances were also documented at the mouth of the West Fork and in Lick Run that additionally included PEC exceedances for acenaphthene. All of the detected PAH compounds are in coal tar, gasoline exhaust, and are products of the incomplete combustion and several are known carcinogens. These are commonly found in elevated levels in urban areas with asphalt pavement and heavy automobile traffic and presumably enter streams via runoff from paved surfaces. The 2021 results showed detectable amounts of PAH compounds at all sites compared to six (6) sites that had no detections in 2016 including tow upstream sites in Mill Creek at MC00 and MC10, each of which had TEC exceedances in 2021. The PEC exceedances were comparable between 2016 and 2021.

Stream Habitat

The habitat assessment is based on the QHEI and its metrics, submetrics, and individual attributes. QHEI scores in 2021 were generally in line with those observed in prior surveys dating back to 1992 with some exceptions (Figure 15). QHEI scores were generally above the threshold for WWH attainability (60) for the mainstem downstream to MC77 immediately upstream from the concrete channel and the beginning of the MWH reach. The QHEI scores in the WWH reach exhibited some variability between years which is likely due to the sampling sites being in slightly different locations between years, but also because of the comparative


Table 10. PAH compounds in sediments in the 2021 Mill Creek study area. Yellow shaded values exceed the TEC and orange shaded values exceed the PEC values of MacDonald et al. (2000).

Site ID	RM	1,4-Dichlorobenzene (mg/kg)	Acenaphthene (mg/kg)	Anthracene (mg/kg)	Benzo(a)anthracene (mg/kg)	Benzo(a)pyrene (mg/kg)	Benzo(b)fluoranthene (mg/kg)	Benzo(g,h,i)perylene (mg/kg)	Benzo(k)fluoranthene (mg/kg)	Chrysene (mg/kg)	Dibenzo(a,h)anthracen e (mg/kg)	Fluoranthene (mg/kg)	Fluorene (mg/kg)	Indeno(1,2,3-cd)pyrene (mg/kg)	Phenanthrene (mg/kg)	Pyrene (mg/kg)
						N	1ill Cred	ek								
MC00	26.4	AA	AA	AA	0.29	0.29	0.41	AA	0.16	0.21	AA	0.65	AA	0.22	0.34	0.49
MC12	19.22	AA	AA	AA	0.52	0.50	0.77	0.36	0.34	0.43	AA	1.10	AA	0.43	0.38	0.84
MC10	18.86	AA	AA	AA	0.49	0.45	0.74	0.34	0.27	0.45	AA	1.30	AA	0.41	0.45	0.90
MC101	17.96	AA	AA	AA	2.50	2.30	3.60	1.90	1.30	2.30	AA	6.10	AA	2.30	AA	AA
MC06	16.73	AA	AA	AA	1.30	1.80	2.80	1.50	1.10	1.80	AA	4.10	AA	1.60	1.10	2.70
MC04	15.41	AA	AA	AA	1.70	2.20	3.80	1.90	1.20	2.60	AA	6.10	AA	2.30	2.20	3.90
MC11	13.96	AA	AA	AA	1.90	1.80	3.10	1.50	1.10	1.80	AA	5.10	AA	1.80	1.50	3.40
MC104	13.76	AA	AA	AA	1.90	2.30	4.00	AA	1.50	2.70	AA	6.20	AA	2.30	2.10	4.30
MC02	13.27	AA	AA	AA	1.80	1.90	3.40	1.90	1.30	2.20	AA	5.00	AA	2.30	1.50	3.50
MC01	11.7	AA	AA	AA	1.80	1.60	2.50	1.30	0.93	1.50	AA	4.70	AA	1.50	1.70	3.00
MC80	10.48	AA	AA	0.8	1.60	2.00	3.60	1.80	1.10	3.10	0.37	6.70	0.53	1.90	3.30	4.50
MC105	9.24	AA	AA	0.63	1.30	1.30	2.10	1.20	0.88	AA	AA	3.90	0.38	1.30	2.40	2.50
MC79	8.63	AA	AA	0.22	1.40	1.70	2.90	1.50	0.93	1.90	0.27	4.40	0.09	1.70	1.60	3.10
MC77	7.47	AA	0.67	0.86	2.20	2.10	3.20	1.60	0.97	2.00	AA	6.40	0.93	1.70	3.40	4.20
MC09	6.8	AA	AA	0.45	0.71	0.68	1.20	0.66	0.49	0.66	AA	2.10	AA	0.68	1.60	1.40
MC07	6.45	AA	AA	0.32	0.65	0.69	1.10	0.55	0.38	0.72	AA	2.10	AA	0.69	1.40	1.40
MC75	4.84	0.31	AA	0.54	1.30	1.20	2.10	1.10	0.76	1.40	AA	3.50	AA	1.20	AA	2.80
MC74	4.21	0.26	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA
MC73	3.45	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	1.40	AA	AA
MC72	3.15	0.12	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA
MC05	2.5	0.05	AA	0.29	1.20	1.30	2.50	1.30	0.79	1.90	0.26	4.80	AA	1.30	2.70	3.90
MC03	1.69	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA
MC71	0.83	0.09	AA	AA	1.30	1.20	2.40	1.20	0.70	1.40	AA	3.10	AA	1.20	1.20	2.80
MC70	0.5	0.17	AA	AA	1.30	1.20	2.20	1.10	0.78	1.20	AA	2.80	AA	1.20	0.88	2.40
MC69	0.21	0.05	AA	AA	1.30	1.30	2.40	1.20	0.91	1.40	AA	2.90	AA	1.30	0.91	2.70
						East F	ork Mil	ll Creel	k							
MC18	1.14	AA	AA	AA	0.30	0.35	0.39	AA	AA	AA	AA	0.55	AA	0.28	AA	0.41
MC15	0.96	AA	AA	AA	0.43	0.37	0.48	0.28	0.23	0.27	AA	0.80	AA	0.25	0.32	0.60
MC14	0.66	AA	AA	AA	0.39	0.43	0.59	AA	AA	AA	AA	0.66	AA	0.33	AA	0.46
						West F	ork Mi	II Cree	k							
MC45	0.2	AA	AA	AA	1.40	1.50	2.30	1.20	0.87	1.30	AA	3.50	AA	1.40	1.50	2.30
						L	ick Ru	n								
MC108	1.7	AA	AA	AA	0.25	0.25	0.38	0.19	0.17	0.20	AA	0.52	AA	0.24	0.16	0.37
MC107	0.45	AA	0.19	0.55	1.10	1.10	1.50	0.83	0.58	1.20	0.17	2.70	0.40	0.89	2.30	2.50

instability of the channel in localized areas. In 2021 all QHEI scores excepting four locations were good and no score was less than 50. QHEI scores were consistently very poor in the concrete channel increasing to fair and borderline good scores in the MWH reach. There has been incremental improvement in portions of the MWH reach since its original designation in 1992 between MC74 and MC03 with one site >60 and others >50. However, the predominance of the high influence modified attributes would need to be addressed for upgrading portions of this reach to WWH to be a serious consideration.

The RM 7.50 site (MC77) was originally part of the MWH segment established by Ohio EPA in 1992 (Ohio EPA 1994) but was recommended for upgrading to WWH in 2011 (MBI 2012) because it was showing sufficient signs of recovery towards WWH potential. Presently the MWH segment begins at the upstream end of the concrete channel extending downstream approximately seven (7) miles to the mouth.

A QHEI matrix showing both good and poor habitat attributes (after Rankin 1995) was developed for each site in the Mill Creek study area (Table 11). Stream habitat in Mill Creek has been modified to varying extents throughout its length as evidenced by the presence of usually 4-7 moderate influence modified attributes at most sites. Both substrate and channel related modified attributes are evident in the QHEI matrix. All except 12 of 43 sites where QHEI was conducted had moderate to high silt covering of the harder substrates. The silt covering was also accompanied by moderate to extensive embeddedness at eight (8) of the 43 sites. Two of

Figure 15. QHEI scores in the mainstem of Mill Creek in 1992, 2011, 2013, 2016, and 2021. The range between good and poor habitat is indicated by the shaded area ranging from 60 (good) to 45 (poor). The MWH reach and discharges and tributaries are indicated on the graphic.

the sites without siltation or embeddedness were at MC09 and MC07 in the concrete channel where deposition of fine materials is deterred by the flushing of the concrete bottom by recurrent and flashy high flows. Channel modifications were evidenced by fair to poor development at 28 sites, including six (6) of the sites in the MWH reach. High influence modified attributes occurred in the MWH segment and especially so in the concrete channel.

The East Fork exhibited evidence of legacy modifications with high influence modified attributes recorded at 3 of 4 sites. An extensive restoration project was recently completed just upstream of the upstream most site at RM 1.2 (MC18) which had a QHEI score of 71.5, an increase of 14.5 points since 2016. The West Fork at RM 0.2 (MC45) exhibited good habitat with no high influence attributes and only 5 moderate influence modified attributes. Cooper Creek had borderline fair QHEI scores at the upstream most sites, but excellent QHEI scores at the two downstream sites. The upper sites were classified by this study as PHWH Class 3B and had both high and moderate influence modified QHEI attributes that related to shallow depths and flow intermittency. Rehabilitation steps are being taken by the Hamilton Co. SWCD to increase pool depths and riffle development using natural materials such as woody debris. Kings Run had a fair QHEI with two high influence modified attributes related to shallow depths and sparse cover. The unnamed tributary to West Fork Creek had good habitat quality. Lick Run exhibited attributes characteristic of an artificially constructed channel with three high and five moderate influence modified attributes and marginally fair QHEI scores. No recommendation for an aquatic life use was made at this time as Lick Run is disconnected from Mill Creek, is currently undesignated, and expectations over the long term are uncertain.

The IPS biological effect thresholds (MBI 2015) were used to assess the QHEI, the Hydro QHEI⁴, and selected QHEI attributes the same way the water chemistry results were assessed (Table 12). The goals were derived from the biological stressor relationships developed to support IPS implementation (MBI 2015). This analysis of the QHEI results could be used to determine design criteria for habitat restoration where the QHEI and/or selected metrics are below the thresholds needed to meet the applicable aquatic life use. In the WWH reach of the Mill Creek the deficiencies included the Hydro QHEI at two (2) sites and channel condition at three (3)

⁴ The Hydro QHEI is a subset of the QHEI metrics to include those representative of or influenced by flow.

55

Table 11. Qualitative Habitat Evaluation Index (QHEI) scores showing good and modified habitat attributes and ratios at sites in the Mill Creek study area in 2021. Narrative ratings and color coding appear in the legend at bottom of table.

Study	area in	ZUZI. N	luii	utiv	C 1 U		od H					juρ	peur						ttributes	יו נט	JUIC		lodor	ato Ir	fluon	co M	lodifie	od A+	tribut	oc.				
							Jou H	apita	Attri	butes				ngn	minue	rice	vioui	ieu P		ō	1	171	louer	ate II	nuen	ce ivi		eu At					ŏ	ਰੁ
Site ID	River Mile	QHEI	No Channelization	Boulder, Cobble, Gravel	Silt Free	Good-Excellent Development	Moderate-High Sinuosity	Moderate-Extensive Cover	Fast Flow w Eddies	Little to No Embeddedness	Max Depth > 40 cm	No Riffle Embeddedness	Good Habitat Attributes	Channelized or No Recovery	Silt/Muck Substrates	No Sinuosity	Sparse No Cover	Max Depths <40 cm	High Influence Poor Attributes	Recovering from Channelizatio	Mod-High Silt Cover	Sand Substrates (Boatable site	Hardpan Origin	Fair- Poor Development	Low Sinuosity	< 2 Cover Types	Intermittent Flow or Pools <20	No Fast Current Types	Mod-Extensive Embeddedness	Mod-Extensive Riffle Embedde	No Riffle	Poor Habitat Attributes	Ratio of Modified (High) to Goo	Ratio of Modified (All) to Good
Site ID	Kiver iville	Qnei	Z	<u> </u>	S	9		2	LL.	_	2		9	10	Mill C			2	_ =	_~	2	S	I	ш		V	=		2				~	~
MC00 ^{HW}	26.40	69.00											5	I					0	•	•				•			•	•			5	0.00	1.00
MC12 ^W	19.22	69.30											6						0	•	•				•				•	•		5		0.83
MC10 ^W	18.86	65.75											6						0	•	•			•	•			•	•	•	•	8		1.33
MC08 ^W	18.37	83.50						•					9						0		•								•			2	0.00	0.22
MC101 ^W	17.96	65.00											5						0	•	•			•	•				•			5		1.00
MC06 ^w	16.73	56.00											3						0	•	•			•	•			•	•	•		7	0.00	2.33
MC04 ^w	15.41	50.50											3			•			1	•	•			•				•	•		•	6	0.33	2.33
MC11 ^W	13.96	65.50											8				•		1	•	•								•			3	0.13	0.50
MC104 ^W	13.76	75.80											7						0	•	•				•				•			4	0.00	0.57
MC02 ^W	13.27	55.50		•									3			•			1	•	•			•				•	•		•	6	0.33	2.33
MC01 ^W	11.70	69.50						•					8						0	•	•				•				•			4	0.00	0.50
MC80 ^W	10.48	78.30		•									7						0	•					•							2	0.00	0.29
MC105 ^W	9.24	71.80						•					7				•		1	•					•				•			3	0.14	0.57
MC79 ^W	8.63	75.50	•	•				•		•			8						0	•	•				•				•			4	0.00	0.50
MC77 ^W	7.47	55.00											2	<u> </u>		•	•		2	•	•			•				•	•	•		6	1.00	4.00
MC09 ^W	6.80	28.50					•						4	•			•		2					•	•	•		•		•		5	0.50	1.75
MC07 ^W	6.45	38.50			•					•			5	•			•		2					•	•	•				•		4		1.20
MC75 ^W	4.84	49.00						•					2	•		•	•		3		•			•				•	•		•	5	1.50	4.00
MC74 ^W	4.21	62.00		•		•		•			•		5	-					0	•	•				•				•	•		5		1.00
MC73 ^W	3.45	58.50		-				•		•	•		4						0	•				•	•			•		•		5	0.00	1.25
MC72 ^W	3.15	58.50						•			•		3				•		0	•	•			•	•	•		•	•	•		7	0.00	2.33
MC03 ^B	2.50 1.69	53.00 57.50		-					•		-	•	2				•		0	_	-			•	-	-		•	•			6 7	0.25	1.75 3.50
MC71 ^B	0.83	49.00											2	•		•			2		•			•	_			•	•	_	•	5	1.00	3.50
MC70 ^B	0.50	50.00											2	Ť		•			1	•	•			•				•	•		•	6		3.50
MC69 ^B	0.30	50.50						i					3			_	•		1		•			•	•			•	•			6	0.33	2.33
505		t - B & W		75			لب	Ť			_		9 ^B ;8 ^W				<u> </u>		0		Ť			-				_	Ť			1	0.00	0.50
	Excelle		_	70									8						0													2	0.00	0.50
ē	Good -	- B & W	60	-74									6						0													4	0.50	1.00
QHEI Narrative		I - HW		-69									6						1													4	0.50	1.00
- Na		B & W		-59									2 ^B ;4 ^W						1													6	1.00	2.00
품		- HW		-54)-44									3 2 ^B ;1 ^W						2													6 6 ^B ;7 ^W	1.00 2.00	2.00 4.00
	Poor -	B & W	_)-44)-42									2 ;1						3													6	2.00	4.00
		Poor	_	30									1 ^{B/W} ;0 ^{HW}						3 ^{B/W} ;4 ^{HW}													7	>2.00	>6.00

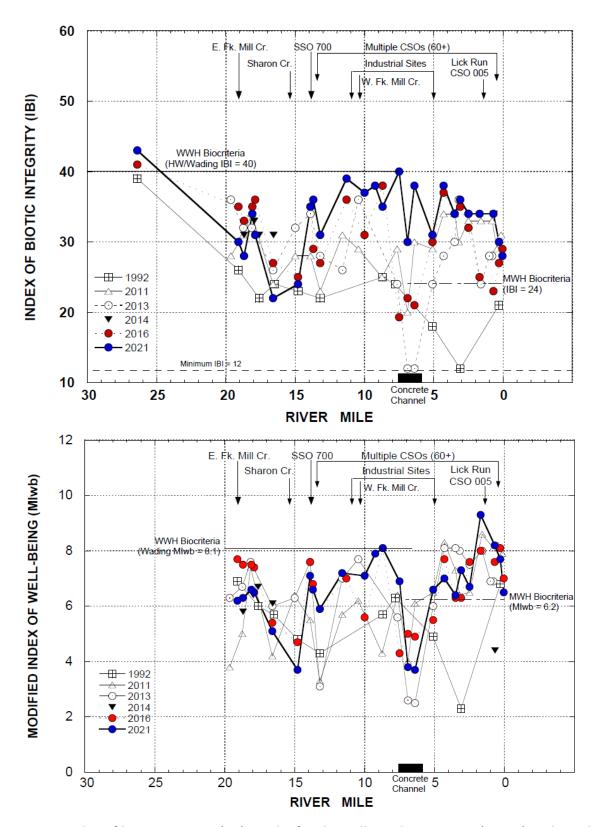
Table 11. co	ntinued .																																	
						Go	od H	abita	t Attri	bute	s			High	Influe	ence	Modi	fied A	Attributes			N	1oder	<mark>ate I</mark> r	<mark>ıflue</mark> r	ice M	lodifi	ed At	tribut	es				
Site ID	River Mile	QHEI	No Channelization	Boulder, Cobble, Gravel	Silt Free	Good-Excellent Development	Moderate-High Sinuosity	Moderate-Extensive Cover	Fast Flow w Eddies	Little to No Embeddedness	Max Depth > 40 cm	No Riffle Embeddedness	Good Habitat Attributes	Channelized or No Recovery	Silt/Muck Substrates	No Sinuosity	Sparse No Cover	Max Depths <40 cm	High Influence Poor Attributes	Recovering from Channelization	Mod-High Silt Cover	Sand Substrates (Boatable sites)	Hardpan Origin	Fair- Poor Development	Low Sinuosity	< 2 Cover Types	Intermittent Flow or Pools <20 cm	No Fast Current Types	Mod-Extensive Embeddedness	Mod-Extensive Riffle Embeddedness	No Riffle	Poor Habitat Attributes	Ratio of Modified (High) to Good	Ratio of Modified (All) to Good
														East	Fork I	Mill C	reek																	
MC18 ^{HW}	1.14	71.50											6			•	•		2	•	•			•					•			4	0.33	1.00
MC15 ^{HW}	0.96	78.00											7						0	•	•				•				•			4	0.00	0.57
MC14 ^{HW}	0.66	67.65											5			•			1	•	•			•	•				•	•		6	0.20	1.20
MC16 ^{HW}	0.39	60.50								_			5	•		•	•		3		•			•					•	•		4	0.60	1.40
												Co	oper Cre	ek (R	ossmo	yne (RM 1		1			1 1				1							
MR-1 ^{HW}	3.57	48.50					•						3				•	•	2	_	•			0		•		•	•		•	6	0.67	
MR-2 ^{HW}	3.42	42.50		•									1			•	•	•	3	•	•			•		•	•	•	•		•	8		11.00
MR-3 ^{HW}	2.84	47.50									•		3	•		•	•		3					•				•	•		•	4	1.00	
MR-5 ^{HW}	2.59	49.50									•		2			•	•		2	•				•		•		•	•		•	6	1.00	
MR-6 ^{HW}	2.13	61.30	•			•							6				•		1					•	•			•			•	4	0.17	0.83
MC118 ^{HW}	1.58	81.50	•			•		•					9						0													0	0.00	0.00
MC119 ^{HW}	0.44	88.50	•	•		•	•	•	•	_	•	•	9						0		•						<u> </u>					1	0.00	0.11
HW	I					1	1		Unn	ame		utary		smoy	ne Cre	ek Ri		06) Ca	ooper Cre	ek @	RM 2	2.80	1 1	_			ı		l .	1		_		
MR-4b ^{HW}	0.55	45.50	•	•	•						•		4				•		1					•	•			-	-		-	5	0.25	1.50
MC45 ^W	0.20	co 20			<u> </u>		<u> </u>						7	west	Fork	IVI III (геек	Π	0		<u> </u>	<u> </u>					l	•	•		<u> </u>		0.00	0.74
IVIC45	0.20	69.30	•	-		-		•		÷	•	•	/	Kin	gs Ru	n /DN	<i>1</i>)		0	_					_			_	_	•		5	0.00	0.71
MC109 ^{HW}	1.11	52.00										l	3	KIII	ys nu	II (KII	•	•	2								l	-	-	l		5	0.67	2.33
Wicios	1.11	32.00									ı	Jnna		utarv	to W	est Fo	ork Cr		@RM1.24	!										<u> </u>			0.07	2.55
MC97 ^{HW}	1.49	69.50											6	,		•	•		2	•								•				2	0.33	0.67
															Lick	Run																		
MC106 ^{HW}	0.98	45.00											2	•			•	•	3		•				•			•	•		•	5	1.50	4.00
MC107 ^{HW}	0.45	47.50											3	•			•	•	3		•					•		•	•		•	5	1.00	2.67
	Excellent	- B & W	≥	75									9 ^B ;8 ^W						0													1	0.00	0.50
	Excellen		_	70									8						0													2	0.00	0.50
ive	Good - I		_	-74									6						0													4	0.50	1.00
QHEI Narrative	Good - Fair - B			-69 -59									6 2 ^B ;4 ^W						1													4 6	0.50 1.00	2.00
Ē	Fair - B		_	-59 -54									3	1					2	1												6	1.00	2.00
各	Poor - B		_	-44									2 ^B ;1 ^W						2													6 ^B ;7 ^W	2.00	4.00
	Poor -		-	-42									2						3													6	2.00	4.00
	Very F	Poor	<	30									1 ^{B/W} ;0 ^{HW}						3 ^{B/W} ;4 ^{HW}													7	>2.00	>6.00

sites. In the MWH reach deficiencies were judged against the MWH use which is inherently modified thus only two sites in the concrete channel (RM 6.45/MC07 and RM6.80/MC09) revealed any deficiencies below MWH goals. The East Fork revealed deficiencies below the WWH IPS thresholds for channel condition (2 sites). Cooper Creek showed multiple deficiencies below the WWH IPS thresholds for the Hydro QHEI at 4 sites, along with deficiencies for current (4 sites), depth (3 sites), channel (3 sites), cover (4 sites), and riffle (4 sites) which is related to the altered hydrological characteristics of this highly urbanized watershed. Lick Run, a recently daylighted stream, had deficiencies below the MWH IPS thresholds for Hydro QHEI at two sites, current (2 sites), depth (2 sites), cover (2 sites), and riffle (2 sites) which is also related to its highly urbanized watershed.

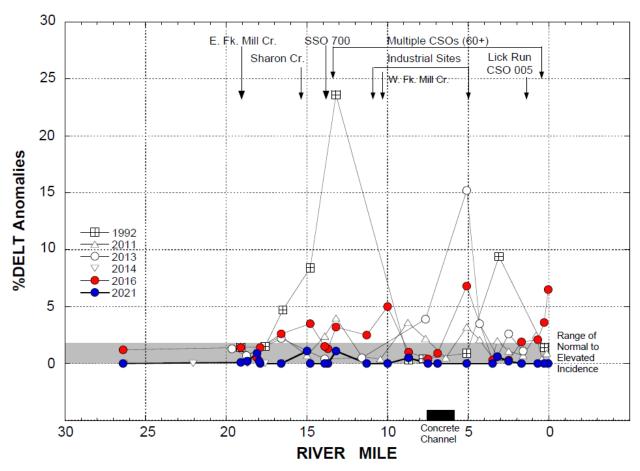
Table 12. QHEI and Hydro QHEI scores and selected attributes in the 2021 Mill Creek study area. Selected values are color coded by their IPS ranges that correspond to tiered uses and narrative quality; blue – EWH (exceptional); green – WWH (good); yellow – MWH (fair); orange – LRW (poor); red – very poor quality. IPS threshold goals for each site are in the column to the right of each value.

	T	Duning	ı	Literatura	1			NA sauda	C			-		
Site ID	River Mile	Drainage Area (sq mi)	QHEI	Hydro- QHEI	Current	Depth	Substrate		Scores Cover	Riparian	Pool	Riffle	ft/mi	lient Score
Site ID	INIVEL IVILIE	Aica (34 iiii)	QIILI	QIILI	Current		l Creek	Citatille	Cover	Mparian	FOOI	Mille	14/1111	30016
MC00	26.40	4.40	69.00	12	3	9	14.5	13.0	14.0	5.5	10.0	4.0	37.00	8
MC12	19.22	26.70	69.25	14	6	8	14.0	12.0	16.0	4.3	9.0	4.0	9.10	10
MC10	18.86	27.00	70.50	12	3	9	13.0	13.0	18.0	3.5	10.0	3.0	9.10	10
MC08	18.37	27.30	83.50	20	9	11	16.5	14.0	18.0	7.0	11.0	7.0	9.10	10
MC101	17.96	42.20	65.00	19	9	10	14.0	11.0	15.0	4.0	9.0	6.0	3.51	6
MC06	16.73	50.50	56.00	10	1	9	13.0	8.5	16.0	3.5	8.0	1.0	3.58	6
MC04	15.41	61.30	50.50	8	1	7	10.0	7.5	15.0	4.0	8.0	0.0	3.58	6
MC11	13.96	68.80	65.50	22	11	11	15.0	15.5	10.0	0.0	12.0	7.0	4.48	6
MC104	13.76	71.60	75.75	22	11	11	17.0	14.5	16.0	3.3	12.0	7.0	4.46	6
MC02	13.70	72.30	55.50	10	3	7	14.0	7.0	16.0	3.5	9.0	0.0	4.48	6
MC01	11.70	73.90	69.50	22	11	11	16.0	12.5	13.0	5.0	12.0	7.0	52.60	4
MC80	10.48	115.00	78.25	22	11	11	18.0	12.0	13.0	6.3	12.0	7.0	8.26	10
MC105	9.24	119.00	71.75	19	9	10	17.5	12.0	11.0	7.3	12.0	6.0	24.40	6
			75.50	22	11	11	15.0	12.5		5.0	12.0	7.0		
MC79	8.63	120.00							14.0				9.35	10
MC77	7.47	126.00	55.00	5	3	2	15.0	10.0	6.0	4.0	6.0	4.0	4.17	10
MC09	6.80	128.00	28.50	5	3	2	2.0	7.5	2.0	3.0	4.0	4.0	1.47	6
MC07	6.45	135.00	38.50	14	9	5	9.5	7.0	2.0	3.0	6.0	5.0	1.47	6
MC75	4.84	139.00	49.00	10	3	7	11.0	6.0	11.0	6.0	9.0	0.0	1.86	6
MC74	4.21	141.00	62.00	15	6	9	14.0	12.0	12.0	5.5	10.0	2.5	1.86	6
MC73	3.45	144.00	58.50	8	1	7	14.0	10.0	15.0	5.0	6.0	2.5	1.86	6
MC72	3.15	154.00	58.50	10	3	7	12.0	10.0	14.0	5.5	8.0	3.0	1.86	6
MC05	2.50	156.00	53.00	14	9	5	13.0	11.0	5.0	5.0	6.0	7.0	1.86	6
MC03	1.69	163.00	57.50	11	3	8	11.5	9.0	15.0	5.0	9.0	2.0	1.86	6
MC71	0.83	164.00	49.00	8	1	7	9.0	6.0	15.0	5.0	8.0	0.0	1.86	6
MC70	0.50	164.00	50.00	8	1	7	11.0	7.0	14.0	4.0	8.0	0.0	1.86	6
MC69	0.21	164.00	50.50	8	1	7	11.0	10.0	12.0	3.5	8.0	0.0	1.86	6
						West Fo	rk Mill Cree	k						
MC45	0.20	36.50	69.25	11	3	8	15.5	13.5	14.0	4.3	8.0	4.0	15.40	10
					Wa	deable Na	rrative Thre	sholds						
	Excellent		<u>></u> 75	<u>≥</u> 11	<u>></u> 6	<u>></u> 8	<u>></u> 16	<u>></u> 16	<u>≥</u> 15	<u>≥</u> 6.5	<u>></u> 10	<u>></u> 5		10
	Good		60-74	9-10	3-5	6-7	14-15	14-15	13-14	5-6	7-9	3-4		8-9
	Fair		45-59	7-8	2	4-5	10-13	10-13	10-12	3-4	5-6	2		6-7
	Poor		30-44	4-6	1	2-3	6-9	6-9	6-9	2	3-4	1		4-5
	Very Poor		<30	<u>≤</u> 3	<1	<u>≤</u> 1	<u><</u> 6	<u><</u> 6	<u><</u> 6	<u><</u> 1	<3	0		<4
						East For	k Mill Creel	ſ						
MC18	1.14	9.30	71.50	17	7	10	14.5	10.0	14.0	6.0	11.0	6.0	6.90	10
MC15	0.96	9.30	78.00	20	9	11	15.0	14.0	16.0	5.0	11.0	7.0	6.90	10
MC14	0.66	9.50	71.00	22	11	11	14.0	9.0	16.0	4.0	12.0	6.0	6.90	10
MC16	0.39	9.60	60.50	20	9	11	12.0	8.0	13.0	2.5	11.0	6.0	24.40	8
					Cooper C	reek (Rossi	noyne Cree	k RM 14.0	5)					
MC111	3.57	0.30	48.50	1	1	0	16.0	13.0	5.0	6.5	4.0	0.0	52.00	4
MC112	3.42	0.50	42.50	-2	-2	0	16.5	9.0	5.0	6.0	2.0	0.0	52.00	4
MC113	2.84	1.10	47.50	4	-3	7	20.0	5.0	5.0	7.5	6.0	0.0	155.00	4
MC32	2.59	1.80	49.50	1	0	1	20.0	9.0	5.0	7.5	4.0	0.0	90.00	4
MC28	2.13	2.60	61.25	9	3	6	22.0	13.0	9.0	7.3	8.0	0.0	75.00	4
MC118	1.58	4.00	81.50	27	16	11	18.0	16.5	16.0	4.0	13.0	7.0	35.70	8
MC119	0.44	5.40	88.50	25	14	11	17.5	19.0	15.0	8.0	12.0	7.0	18.88	10
				U	nnamed Tri	ibutary to	West Fork C		1 1.24					
MC97	1.49	0.80	69.50	12	3	9	19.0	11.5	13.0	7.0	10.0	5.0	166.70	4
							reek (Rossi							
MC114	0.55	0.50	45.50	3	-3	6	17.5	9.0	6.0	5.0	4.0	0.0	86.00	4
							gs Run							
MC109	1.11	0.90	52.00	1	1	0	15.0	15.0	8.0	6.0	4.0	0.0	90.90	4
							k Run							
MC106	0.98	3.50	45.00	1	1	0	15.0	11.0	6.0	5.0	4.0	0.0	83.30	4
MC107	0.45	3.60	47.50	1	1	0	14.5	12.0	4.0	5.0	4.0	0.0	13.16	8
							rrative Thre							
	Excellent		>70	≥ <u>10</u>	<u>≥</u> 6	<u>≥</u> 8	<u>≥</u> 15	≥15	<u>≥</u> 14	<u>≥</u> 6.0	<u>></u> 8	<u>≥</u> 3.5		10
	Good		55-69	<u>2</u> 10	3-5	6-7	13-14	13-14	12-13	<u>2</u> 0.0	6-7	3		8-9
	Fair		43-54	6-7	2	4-5	10-12	10-12	9-11	3	4-5	2		6-7
			30-42	_	1	2-3	6-9	6-9	6-9	2		1		
	Poor			3-5							2-3			4-5
	Very Poor		<30	<3	<1	<u><</u> 1	<u><</u> 6	<6	<6	≤1	<2	0		<4

Biological Assemblages


Fish were sampled at 40 sites and macroinvertebrates at 33 sites in 2021 following standardized procedures specified by the 2011 Plan (MBI 2011) and consistent with Level 3 specifications and the Ohio WQS. Results for the IBI, MIwb, and %DELT anomalies were used to assess any changes in the fish assemblages and the ICI were used to assess changes in the macroinvertebrate assemblage. Such analyses offer the opportunity to determine not only the magnitude of any changes, but to determine the incremental changes that have taken place through time. It also provides a way to visualize the degree to which the biocriteria indices either exceed or fail to attain their respective biological criteria.

Fish Assemblage Results


Results for the two primary fish assemblage indices that comprise the Ohio biocriteria are depicted for 2021 and all years of previous results since 1992 (Figure 16). The prior sampling conducted by Ohio EPA in 1992 (Ohio EPA 1994) and MSD/MBI in 2011 (MBI 2012), 2013, and 2016 offers an opportunity to examine changes through time for the mainstem of Mill Creek.

The overall results show that increases in the quality of the fish assemblages have taken place along the length of the commonly assessed reaches of the mainstem over approximately 26 miles since 1992 (Figure 16). The increases in the IBI and MIwb between 1992 and 2016 were insufficient to attain the WWH biocriterion at most sites, but the narrative quality improved from consistently poor in 1992 to mostly fair in 2016. The IBI improved further in 2021 showing incremental increases below the WWH biocriterion, some to the nonsignificant departure range, and two sites meeting the WWH biocriterion (Figure 16). The increases observed in the MWH reach were sufficient to attain and exceed the IBI MWH biocriterion. The Ohio EPA results from the upper mainstem in 2014 were included in Figure 16 to illustrate the consistency with the 2011, 2013, 2016, and 2021 MBI results. The 2014 IBI at the upstream most site was in the very good range and was comparable to the 2021 result in terms of WWH attainment.

The MIwb showed comparatively little change between 1992 and 2016 in the WWH designated reach but increased in 2021 by attaining the WWH biocriterion at two sites in the WWH reach and nine sites in the MWH reach (Figure 16, lower). This is not necessarily a contradiction of the IBI results, but rather shows the usual recovery process where fish abundance and biomass can increase across tolerant and moderately tolerant species in the initial stages of recovery, whereas the IBI needs to have compositional changes among intermediate and sensitive species in order to attain the WWH IBI. The MIwb continued to show a marked increase from 1992 in the MWH designated reach which suggests a lessening of legacy toxic impacts along the formerly industrialized reach just upstream. DELT anomalies markedly declined between 1992 and 2016 suggesting diminished legacy toxic impacts but remained elevated above normal levels (Figure 17). The 2021 results were markedly lower than 2016, rates were below the range of normal to elevated incidence at all sites in 2021. This will continue to be a key indicator of lingering stress going forward.

Figure 16. Index of biotic integrity (IBI) results for the Mill Creek mainstem (upper) and MIwb results (lower) in 1992, 2011, 2013, 2014, 2016, and 2021 (upper). The WWH and MWH biocriteria are depicted with major pollution sources and tributaries along the top of each graph.

Figure 17. The percentage of fish with DELT anomalies in the mainstem of Mill Creek during 1992, 2011, 2013, 2014, 2016, and 2021. The range of %DELT from normal to elevated incidence are depicted with major pollution sources and tributaries along the top of each graph.

Key fish assemblage results are depicted in Table 13. Excepting four sites that had no fish collected, overall narrative fish assemblage condition ranged from very poor to good. Of the 40 sites with fish assemblage data 15 failed to attain the WWH IBI biocriteria threshold and another two (2) failed the MWH biocriterion which is 43% of all sites, which is down from 61% in 2016. No toxic tolerant signatures such as highly elevated DELT anomalies were evident in the 2021 results. The [proportion of tolerant species was high in the upper Mill Creek mainstem along with low proportions of simple lithophils in the lower mainstem. The tributaries had few or no sensitive species with high proportions of tolerant species at two Cooper Creek sites (MC112 and MC113) and the two Lick Run sites with fish. DELT anomalies were low and at or below background levels expected for this metric.

The composition of the fish assemblage was compared between 2016 and 2021 and for the WWH and MWH reaches (Tables 14 and 15). In the WWH reach Emerald Shiner, Striped Shiner, Rainbow Darter, and Greenside Darter increased in numbers from 2016 to 2021. Seven species not collected in 2016 were collected in 2021 and included Smallmouth Redhorse for the first

Table 13. Fish assemblage response indicators in the Mill Creek, the East Fork, and West Fork Mill Creek in 2021. The results for each indicator are color coded in accordance with the key at the bottom of the table.

		Drainage							
	River	Area (sq.			Native		Sensitive	Simple	
Site ID	Mile	mi.)	IBI	Miwb	Species	%DELT	Species	Lithophils	%Tolerant
				Mill	Creek				
MC00	26.4	4.43	43	NA	11.5	0.00	1.0	33.38	27.72
MC12	19.22	26.7	30	6.20	14.0	0.12	2.5	10.23	67.82
MC10	18.86	27	28	6.22	12.0	0.19	1.5	8.34	65.70
MC08	18.37	27.3	34	6.57	11.0	0.85	1.0	5.54	42.67
MC101	17.96	42.2	31	6.41	13.5	0.15	2.0	10.03	71.73
MC06	16.73	50.5	22	5.09	8.0	0.00	2.0	2.25	77.53
MC04	15.41	61.3	24	3.74	4.0	1.14	1.0	1.12	66.29
MC11	13.96	68.8	35	7.06	16.0	0.00	2.5	14.65	55.33
MC104	13.76	71.6	36	6.57	13.5	0.00	3.0	22.72	40.33
MC02	13.27	72.3	31	5.92	11.5	1.06	1.5	16.16	73.31
MC01	11.7	73.9	39	7.19	21.0	0.00	5.5	13.92	41.62
MC80	10.48	115	37	7.09	16.0	0.00	7.0	36.78	33.42
MC105	9.24	119	38	7.84	19.5	0.00	7.0	11.89	24.83
MC79	8.63	120	35	8.09	16.5	0.50	6.0	24.30	29.22
MC77	7.47	126	40	6.88	16.5	0.00	5.0	14.94	11.70
MC09	6.8	128	30	3.84	7.0	0.00	2.0	2.56	1.54
MC07	6.45	135	28	3.69	3.0	0.00	1.0	0.00	0.00
MC75	4.84	139	31	6.53	10.0	0.00	1.5	0.67	28.28
MC74	4.21	141	38	6.98	14.5	0.00	6.0	5.75	17.00
MC73	3.45	144	34	6.34	14.5	0.00	3.5	3.17	18.64
MC72	3.15	154	36	7.26	14.5	0.56	4.5	0.80	12.59
MC05	2.5	156	34	6.69	11.0	0.16	4.0	0.97	0.28
MC03	1.69	163	34	9.27	16.0	0.00	1.0	0.00	7.19
MC71	0.83	164	34	8.16	16.0	0.00	1.0	0.00	10.34
MC70	0.5	164	30	7.72	11.0	0.00	1.0	2.50	5.00
MC69	0.21	164	28	6.47	8.0	0.00	2.0	3.23	12.91
				West Fork	Mill Creek				
MC45	0.2	36.5	26	7.06	14.0	0.00	3.0	21.57	72.55
				East Fork	Mill Creek				
MC18	1.14	9.27	33	NA	10.5	0.00	1.5	14.43	58.80
MC15	0.96	9.3	34	NA	11.5	0.00	2.5	17.56	67.35
MC14	0.66	9.53	28	NA	8.5	0.18	1.0	21.73	70.23
MC16	0.39	9.59	28	NA	8.5	0.00	1.5	17.91	75.12
	Ex	cellent	44-60	> 9.1	>25	0	>15	>30	<u><</u> 15
Narrative	(Good	38-43	8.0-9.0	>14	<1.3	11-15	>20-30	>15-30
Ranking		Fair	26-37	5.8-7.9	>10	<3.0	3-10	>10-20	>30-50
Thresholds		Poor	19-25	4.0-5.7	>7	>10	1-2	>5-10	>50-70
	Ve	ry Poor	12-18	<4.0	<u><</u> 7	>20	0	<u><</u> 5	<u>></u> 70

Table 13 . con	tinued.								
	River	Drainage Area (sq.			Native		Sensitive	Simple	
Site ID	Mile	mi.)	IBI	Miwb	Species	%DELT	Species	Lithophils	%Tolerant
					noyne Creek				
MC111	3.57	0.34	28	NA	3.0	0.49	0.0	8.25	64.56
MC112	3.42	0.48	28	NA	3.0	0.22	0.0	16.18	76.40
MC113	2.84	1.1	30	NA	4.0	0.00	0.0	5.15	73.39
MC32	2.59	1.8	30	NA	4.0	0.00	0.0	6.68	41.43
MC28	2.13	2.6	32	NA	5.0	0.53	0.0	15.33	47.73
MC118	1.58	3.99	46	NA	11.0	0.00	1.0	23.16	28.95
MC119	0.44	5.43	46	NA	12.0	0.00	1.0	16.62	27.79
	Un	named Trib	utary to Cod	per Creek (Rossmoyne	Creek RM 14	4.05) @RM 2	2.80	
MC114	0.55	0.49	12	NA	1.0	0.00	0.0	0.00	NA
				King	s Run				
MC109	1.11	0.91	12	NA	0.0	0.00	0.0	0.00	NA
		ı	Jnnamed Tr	ibutary to V	Vest Fork Cre	ek @RM 1.	24		
MC97	1.49	0.84	12	NA	0.0	0.00	0.0	0.00	NA
				Lick	Run				
MC108	1.7	0.19	Dry						
MC106	0.98	3.45	16	NA	2.0	0.00	0.0	0.00	97.06
MC107	0.45	3.55	20	NA	2.0	0.00	0.0	0.00	80.65
	VIC107 0.45 3.55 Excellent		44-60	>9.1	>25	0	>15	>30	<u><</u> 15
Narrative	(Good	38-43	8.0-9.0	>14	<1.3	11-15	>20-30	>15-30
Ranking		Fair	26-37	5.8-7.9	>10	<3.0	3-10	>10-20	>30-50
Thresholds		Poor	19-25	4.0-5.7	>7	>10	1-2	>5-10	>50-70
	Ve	ry Poor	12-18	<4.0	<u><</u> 7	>20	0	<u>≤</u> 5	<u>></u> 70

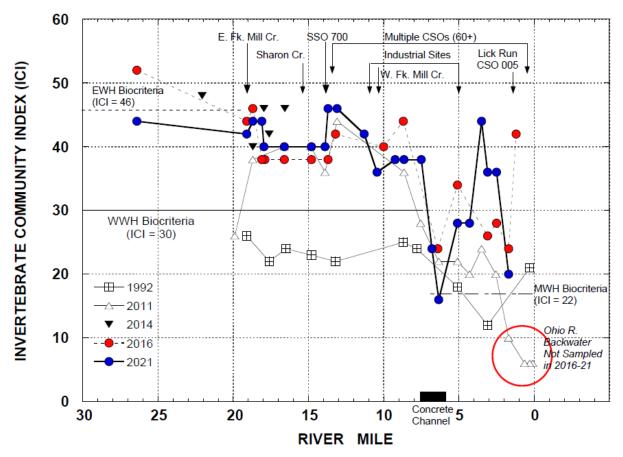
time. Other notable new species were Black Redhorse, River Carpsucker, Rosyface Shiner, and Silverjaw Minnow. Five species collected in 2016 were not collected in 2021, but each occurred in low numbers in 2016. Tolerant species such as Green Sunfish and Common Carp increased in abundance while intermediate and sensitive species slightly decreased or remained stable in numbers between 2016 and 2021. In the MWH reach species with significant increases in 2021 included Longear Sunfish (3.0 vs. 16.0), Rainbow Darter, and Sand Shiner. The 2021 assemblage included several large river species which presumably entered Mill Creek via the Ohio River as water quality conditions continue to improve.

Prior to the urbanization development of the Mill Creek watershed the fish fauna also included the highly intolerant Bigeye Chub, Rosyface Shiner, Brook Silverside, and Sand Darter and one record of Alligator Gar at the mouth of Mill Creek (Trautman 1981). Species of intermediate tolerance (e.g., Striped Shiner, Silverjaw Minnow, Sand Shiner, and Orangethroat Darter) have now been documented in Mill Creek as the heavily polluted conditions of the pre-1980s and 1990s have been abated. Sensitive fish species still occur in low numbers and restoring the assemblage to full WWH expectations will require dealing with non-pollutant stressors such as urban runoff and habitat.

Table 14. Fish species (excluding hybrids) collected in the WWH reach of the Mill Creek mainstem in 2021 showing catch-per-unit-effort (CPUE) and percent by numbers compared to 2016.

Species (reply in 2016)	2	2021	2	2016
Species (rank in 2016)	CPUE	%numbers	CPUE	%numbers
1. Green Sunfish (2)	159.1	32.63%	44.5	12.50%
2. Common Carp (13)	53.5	10.97%	6.4	1.81%
3. Bluegill Sunfish (4)	44.7	9.16%	37.4	10.47%
4. Emerald Shiner (33)	39.5	8.11%	0.1	0.03%
5. Central Stoneroller (1)	36.0	7.38%	75.9	21.30%
6. Northern Hog Sucker (6)	24.0	4.93%	22.0	6.18%
7. Bluntnose Minnow (7)	19.2	3.94%	18.7	5.24%
8. Largemouth Bass (9)	13.5	2.77%	12.2	3.43%
9. White Sucker (3)	12.7	2.61%	40.9	11.47%
10. Gizzard Shad (8)	10.8	2.21%	13.8	3.87%
11. Striped Shiner (17)	9.7	2.00%	3.2	0.89%
12. Orangethroat Darter (10)	9.4	1.92%	12.0	3.37%
13. Rainbow Darter (23)	7.4	1.52%	1.0	0.28%
14. Greenside Darter (31)	7.0	1.43%	0.2	0.05%
15. Spotfin Shiner (5)	6.4	1.31%	24.2	6.80%
16. Fantail Darter (24)	6.3	1.29%	0.7	0.20%
17. Johnny Darter (12)	5.4	1.11%	7.0	1.97%
18. Sand Shiner (11)	5.3	1.09%	11.3	3.17%
19. Longear Sunfish (19)	4.1	0.85%	1.6	0.46%
20. Pumpkinseed Sunfish (15)	3.3	0.67%	4.1	1.15%
21. Yellow Bullhead (14)	3.2	0.65%	5.9	1.66%
22. Channel Catfish (22)	2.0	0.41%	1.2	0.34%
23. Smallmouth Bass (21)	1.3	0.26%	1.4	0.39%
24. Black Crappie (25)	0.9	0.19%	0.5	0.15%
25. Western Mosquitofish (none)	0.6	0.12%	-	-
26. Spotted Bass (20)	0.6	0.12%	1.6	0.44%
27. Logperch (28)	0.4	0.09%	0.2	0.07%
28. River Carpsucker (none)	0.3	0.05%	-	-
29. Smallmouth Redhorse (none)	0.2	0.04%	-	-
30. Creek Chub (16)	0.2	0.04%	3.3	0.91%
31. Black Redhorse (none)	0.1	0.02%	-	-
32. Goldfish (27)	0.1	0.02%	0.3	0.08%
33. Rosyface Shiner (none)	0.1	0.02%	-	-
34. Silverjaw Minnow (none)	0.1	0.02%	-	-
35. Warmouth Sunfish (none)	0.1	0.02%	-	_

2016 species not collected in 2021: Golden Redhorse, Western Blacknose Dace, Flathead Catfish, Quillback Carpsucker Suckermouth Minnow


Table 15. Fish species (excluding hybrids) collected in the MWH reach of the Mill Creek mainstem in 2021 showing catch-per-unit-effort (CPUE) and percent by numbers compared to 2016.

Species (sould in 2016)	2	021		2016
Species (rank in 2016)	CPUE	%numbers	CPUE	%numbers
1. Emerald Shiner (1)	346.6	58.83%	282.8	42.57%
2. Gizzard Shad (2)	48.2	8.18%	91.4	13.76%
3. Green Sunfish (15)	38.9	6.60%	9.2	1.39%
4. Bluegill Sunfish (4)	19.8	3.36%	23.4	3.52%
5. Longear Sunfish (13)	16.0	2.71%	3.0	1.48%
6. Channel Catfish (3)	13.6	2.30%	75.2	11.32%
7. Sand Shiner (16)	12.3	2.08%	2.4	1.17%
8. Common Carp (9)	11.9	2.02%	12.3	1.85%
9. Rainbow Darter (none)	11.1	1.89%	-	-
10. Northern Hog Sucker (11)	7.9	1.35%	3.6	1.78%
11. Largemouth Bass (10)	7.2	1.22%	12.3	1.85%
12. Spotfin Shiner (8)	6.9	1.17%	4.3	2.14%
13. Smallmouth Buffalo (17)	5.4	0.91%	6.6	0.99%
14. Central Stoneroller (5)	4.9	0.82%	6.1	3.05%
15. Bluntnose Minnow (18)	4.7	0.80%	2.0	0.99%
16. River Carpsucker (6)	4.5	0.76%	15.0	2.25%
17. Freshwater Drum (14)	4.2	0.72%	2.9	1.43%
18. Channel Shiner (12)	3.8	0.65%	11.1	1.67%
19. Greenside Darter (none)	3.6	0.61%	-	-
20. Spotted Bass (20)	2.6	0.43%	3.3	0.49%
21. Smallmouth Redhorse (21)	1.3	0.22%	0.9	0.42%
22. Yellow Bullhead (30)	1.2	0.20%	0.2	0.12%
23. Smallmouth Bass (29)	1.2	0.20%	0.3	0.14%
24. Orangethroat Darter (none)	1.2	0.20%	-	-
25. Flathead Catfish (25)	1.0	0.17%	0.4	0.21%
26. Quillback Carpsucker (19)	0.9	0.15%	4.7	0.70%
27. Suckermouth Minnow (none)	0.9	0.15%	-	-
28. White Bass (24)	0.9	0.15%	1.7	0.26%
29. White Crappie (23)	0.6	0.11%	1.9	0.28%
30. Black Crappie (27)	0.6	0.11%	1.3	0.19%
31. Orangespotted Sunfish (none)	0.6	0.11%	-	-
32. Pumpkinseed Sunfish (22)	0.6	0.11%	0.9	0.42%
33. Logperch (33)	0.5	0.09%	0.6	0.09%
34. Longnose Gar (26)	0.4	0.07%	1.3	0.19%
35. Black Buffalo (none)	0.4	0.07%	-	-
2016 species not collected: none				

Macroinvertebrate Assemblage Results

Results for the primary macroinvertebrate assemblage indices that comprise the Ohio biocriteria are depicted for 2021 and all years of previous results since 1992 (Figure 18) and along a gradient of quality for selected macroinvertebrate assemblage attributes (Table 16). The prior sampling conducted by Ohio EPA in 1992 (Ohio EPA 1994) and MSD/MBI in 2011 (MBI 2012), 2014 (Ohio EPA), 2016, and 2021 offers an opportunity to examine changes through time for the mainstem of Mill Creek.

The overall results show that increases in the quality of the macroinvertebrate assemblages have taken place along the length of the commonly assessed reaches of the mainstem over approximately 26 miles since 1992 (Figure 18). The increases in the ICI between 1992 and 2011 were sufficient to attain the WWH ICI biocriterion at all sites, but the narrative quality improved from consistently poor in 1992 to mostly good and exceptional at selected sites in 2016 and 2021.

Figure 18. Invertebrate Community Index (ICI) results for the Mill Creek mainstem in 1992, 2011, 2014, 2016, and 2021. The WWH and MWH biocriteria are depicted with major pollution sources and tributaries along the top of each graph.

The ICI WWH biocriterion of 30 was met or surpassed at 23 of the 33 sites (70%) sampled in 2021 and included meeting the WWH criterion at all sites in the WWH designated reach (Table 16). Qualitative EPT taxa ranged from 8-13 in the WWH reach and 2-7 in the MWH reach.

Table 16. Macroinvertebrate assemblage response indicators in the Mill Creek, the East Fork, and West Fork Mill Creek in 2021. The results for each indicator are color coded in accordance with the key at the bottom of the table. ICI and qualitative metrics are on a quality scale consistent with a gradient from exceptional to very poor and not related to ICI calibration curves.

from exce _l	T	Drainage	5501 (.c. canbi	acion cu	, , , , ,	Ouglita	%Toxic	%Organic
	River	Area (sq.			Total	Sensitive	Percent	Percent	Qualita- tive EPT	Tolerant	%Organic Enrichment
Site ID	Mile	mi.)	ICI	Narrative	Taxa	Taxa	Tolerant	Mayflies	Taxa	Taxa	Taxa
Site ib	IVIIIC	1111.7	ICI	Ivaliative		Creek	Tolerant	iviayines	Taxa	Taxa	Taxa
MC00	26.00	4.43	44		48	5	2.86	4.58	10	2.9	11.0
MC12	19.10	26.70	42		48	6	1.99	13.43	8	1.0	16.4
MC10	18.70	27.00	44		34	2	0.35	17.59	8	0.3	3.3
MC08	18.37	27.30	44		67	8	5.80	8.54	13	0.6	13.3
MC101	17.96	42.20	40		48	4	1.22	6.97	9	0.8	2.7
MC06	16.60	50.50	40		50	5	3.06	3.65	11	0.5	2.9
MC04	15.41	61.30	40		57	8	0.67	16.77	11	0.0	23.2
MC11	13.96	68.80	40		53	7	1.30	0.98	12	0.0	3.7
MC104	13.70	71.60	46		46	5	0.98	35.30	9	0.3	3.7
MC02	13.10	72.30	46		52	8	2.94	14.22	13	0.0	14.1
MC01	11.70	73.90	42		47	7	0.95	10.16	11	0.0	1.0
MC80	10.48	115.00	36		45	5	0.34	14.71	9	0.0	2.1
MC105	9.24	119.00	38		43	3	0.24	8.84	8	0.2	2.2
MC79	8.68	120.00	40		45	3	0.54	12.00	8	0.0	1.9
MC77	7.65	126.00	38		53	6	1.04	13.08	11	0.0	0.4
MC09	6.80	128.00	24		24	1	10.48	6.96	5	0.9	3.3
MC07	6.35	135.00	16		23	0	40.32	1.72	3	0.0	6.5
MC75	4.84	139.00	28		50	3	7.85	0.56	7	0.0	22.9
MC74	4.60	141.00	28		37	4	2.94	1.05	6	0.0	17.6
MC73	3.60	144.00	44		58	4	1.28	5.49	7	0.0	6.7
MC72	3.10	154.00	36		44	3	1.26	4.92	7	0.8	13.6
MC05	2.50	156.00	36		54	2	7.07	2.01	5	0.6	13.1
MC03	1.69	163.00	20		38	0	18.09	1.53	2	0.9	53.7
	•				West Fork	Mill Creek					
MC45	0.20	36.50	30		29	3	5.56	71.47	8	1.0	2.0
					East Fork	Mill Creek					
MC18	1.14	9.27	42		57	9	3.46	37.85	12	1.1	8.4
MC15	1.05	9.30	30		41	1	30.08	0.40	7	4.4	30.5
MC14	0.72	9.53	38		38	1	5.15	0.91	7	1.9	15.8
MC16	0.10	9.59	36		57	3	17.83	0.61	6	1.7	28.8
				Cooper Cre	ek (Rossm	oyne Creek	RM 14.05)				
MC111	3.57	0.34	NA	<u>VP</u> *	11	0			0		
MC112	3.42	0.48	NA	F*	17	2			4		
MC113	2.84	1.10	NA	<u>VP</u> *	7	0			0		
MC32	2.59	1.80	NA	<u>VP</u> *	5	0			0		
MC28	2.13	2.60	NA	MG	27	1			7		
MC118	1.58	3.99	NA	G	29	6			10		
MC119	0.46	5.43	NA	G	29	5			10		
				tary to Coop			Creek RM 1	4.05) @RN			
MC114	0.55	0.49	NA	<u>VP</u> *	9	0			0		
		_				s Run					
MC109	1.00	0.91	NA	PHW3A	36	3			10		
,	1	l		nnamed Trib			ek @RM 1	.24			
MC97	1.40	0.84	NA	PHW3A	31	3			9		
146400	1 4 70	0.10	A. A	DUILLE		Run					
MC108	1.70	0.19	NA	PHW2	23	0			1		
MC106	0.98	3.45	NA	P P	22	1			1		
MC107	0.45	3.55 cellent	NA NA	-	23	0		> 20	3	0.0	-
		Good	<u>> 42</u>	E MC C	> 60	>20	<u><</u> 5	<u>></u> 30	>20	0.0	<5 <1E
Narrative		air	32-41	MG-G	>40-60	>15-20	>5-10	>20-30	>15-20	<5	<15 >15
Categories		oor	23-31	F	>20-40	>10-15	>10-25	>10-20	>10-15	<20	≥15 >25
			13-22	P	>10-20	2-10 <2	>25-50 >50	>5-10	2-10	<u>></u> 35 <60	≥35 >60
	ver	y Poor	0-12	VP	<10	<2	<u>_</u> 50	<u><</u> 5	<2	<60	>60

The narrative range of biological quality assignments for the assemblage attributes in Table 16 were taken from Yoder and Rankin (1995b) or DeShon (2003) or established by examining box and whisker plots of metrics vs. narrative ranges of the ICI/IBI, typically using the 25th percentile metric score at sites within these ICI/IBI ranges to set boundaries of metric narrative categories. These are not necessarily equivalent to metric scores of the IBI and ICI. The macroinvertebrate Qual. EPT and Sensitive Taxa narrative ranges were based on the narrative quality ranges in Ohio EPA (2015) Table 4 and Figures 4 and 5.

The macroinvertebrate ICI showed the most consistency among the biological assemblage results in 2021 attaining the WWH biocriterion in the entirety of the WWH and MWH reaches (Figure 18; Table 16). In 2011 the ICI was in non-attainment in the Ohio R. backwater affected section of the mainstem due primarily to the altered habitat and lack of flow over the artificial substrate samplers. These sites were not sampled in 2016 or 2021 given the difficulties of interpreting and the relevancy of the ICI results.

Sensitive taxa were present at all except three sites mostly ranging from 2-8 taxa in the WWH reach with 8 taxa at three sites in the middle reaches. There were 2-4 sensitive taxa in the MWH reach. The East Fork had 6-12 Qualitative EPT taxa and 3-7 sensitive taxa. Three sites on Coopers Creek had no qualitative EPT taxa and only one sensitive taxa, a reflection of the current limiting habitat and water quality conditions. The 2021 results all represent an overall improvement over the 2016 and all prior year results.

REFERENCES

- DeShon, J. D. 1995. Development and application of the invertebrate community index (ICI), pages 217-243. in W.S. Davis and T. Simon (eds.). Biological Assessment and Criteria: Tools for Risk-based Planning and Decision Making. Lewis Publishers, Boca Raton, FL.
- Dufour, A.P. 1977. *Escherichia coli*: The fecal coliform. American Society for Testing and Materials Spec. Publ. 635: 45-58.
- Gammon, J. R., A. Spacie, A., J. L. Hamelink, and R. L. Kaesler. 1981. Role of electrofishing in assessing environmental quality of the Wabash River, in Ecological assessments of effluent impacts on communities of indigenous aquatic organisms, in Bates, J. M. and Weber, C. I., Eds., ASTM STP 730, 307 pp.
- Gammon, J. R. 1973. The effect of thermal inputs on the populations of fish and macroinvertebrates in the Wabash River. Purdue University Water Resources Research Center Technical Report 32. 106 pp.
- Karr, J.R. and C.O. Yoder. 2004. Biological assessment and criteria improve TMDL planning and decision-making. Journal of Environmental Engineering 130(6): 594-604.
- Karr, J. R. 1991. Biological integrity: A long-neglected aspect of water resource management. Ecological Applications 1(1): 66-84.
- Karr, J. R., K. D. Fausch, P. L. Angermeier, P. R. Yant, and I. J. Schlosser. 1986. Assessing biological integrity in running waters: a method and its rationale. Illinois Natural History Survey Special Publication 5: 28 pp.
- MacDonald, R.S. Carr, F.D. Calder, E.R. Long, and C.G. Ingersoll. 2000. Development and evaluation of sediment guidelines for Florida coastal waters. Ecotoxicology 5: 253-278.
- Metropolitan Sewer District of Greater Cincinnati (MSDGC). 2011a. Lower Mill Creek fact sheet: Project Groundwork. MSDGC, Cincinnati, OH. 3 pp. www.msdgc.org.
- Metropolitan Sewer District of Greater Cincinnati (MSDGC). 2011b. 2010 Sustainability Report: Redefining the Future. MSDGC, Cincinnati, OH. 51 pp. www.msdgc.org.
- Metropolitan Sewer District of Greater Cincinnati (MSDGC). 2011c. Metropolitan Sewer District of Greater Cincinnati, Division of Industrial Waste Laboratory Section Chemistry Quality Assurance Program for Chemical Analysis. SOP 001 (10/01/01) Revision No. 2 (06/01/11).

- Midwest Biodiversity Institute (MBI). 2017. Biological and Water Quality Assessment of Mill Creek 2016. Hamilton County, Ohio. Technical Report MBI/2017-6-8. Columbus, OH 43221-0561. 73 pp. + appendices. http://www.msdgc.org/initiatives/water_quality/index.html.
- Midwest Biodiversity Institute (MBI). 2015. Integrated Prioritization System (IPS)

 Documentation and Atlas of Biological Stressor Relationships for Southwest Ohio.

 Technical Report MBI/2015-12-15. MSD Project Number 10180900. Columbus, OH

 43221-0561. 32 pp. + appendices. http://www.msdgc.org/initiatives/water_quality/index.html.
- Midwest Biodiversity Institute (MBI). 2012. 2011 Biological and Water Quality Study of Mill Creek and Tributaries Hamilton County, Ohio. Technical Report MBI/2012-6-10. MSD Project Number 10180900. Columbus, OH. 117 pp. + appendices. http://www.msdgc.org/initiatives/water-quality/index.html.
- Midwest Biodiversity Institute (MBI). 2011. Watershed Monitoring and Bioassessment Plan for the MSD Greater Cincinnati Service Area, Hamilton County, Ohio. Technical Report MBI/2011-6-3. Columbus, OH. 30 pp. + appendices. http://www.msdgc.org/initiatives/water_quality/index.html.
- Ohio Department of Natural Resources (ODNR). 1960. Gazetteer of Ohio Streams. Division of Water, Columbus, Ohio. Ohio Water Plan Inventory Rept. No. 12. 179 pp.
- Ohio Environmental Protection Agency. 2020. Field Methods for Evaluating Primary Headwater Streams in Ohio. Version 4.1. Division of Surface Water, Columbus, OH. 89 pp. + appendices.
- Ohio Environmental Protection Agency (Ohio EPA). 2019a. Surface Water Field Sampling Manual for water quality parameters and flows. Final Manual April 22, 2019. Version 7.0. Division of Surface Water, Columbus, Ohio. 40 pp.
- Ohio Environmental Protection Agency (Ohio EPA). 2019b. Surface Water Field Sampling Manual for water quality parameters and flows. Final Manual April 22, 2019. Version 7.0. Division of Surface Water, Columbus, Ohio. 43 pp.
- Ohio Environmental Protection Agency (Ohio EPA). 2019c. Surface Water Field Sampling Manual Appendix III sediment sampling. Final Manual April 22, 2019. Version 7.0. Division of Surface Water, Columbus, Ohio. 53 pp.
- Ohio Environmental Protection Agency (Ohio EPA). 2016. Biological and Water Quality Study of the Southwest Ohio Tributaries 2014. Butler, Hamilton, Brown, and Clermont Counties, Ohio. Ohio EPA Technical Report EAS/2016-06-01. Division of Surface Water, Columbus, Ohio. 119 pp.

- Ohio Environmental Protection Agency (Ohio EPA). 2015a. Biological criteria for the protection of aquatic life (revised June 26, 2015). Volume III: Standardized biological field sampling and laboratory methods for assessing fish and macroinvertebrate communities. Tech. Rept. EAS/2015-06-01. Division of Surface Water, Ecological Assessment Section, Columbus, Ohio. 66 pp.
- Ohio Environmental Protection Agency (Ohio EPA). 2015b. Proposed Stream Nutrient Assessment Procedure. Ohio EPA Nutrients Technical Advisory Group Assessment Procedure Subgroup. Division of Surface Water, Columbus, OH. 17 pp. http://epa.ohio.gov/dsw/wqs/NutrientReduction/NutrientTAG.aspx.
- Ohio Environmental Protection Agency (Ohio EPA). 2006. Methods for assessing habitat in flowing waters: using the qualitative habitat evaluation index (QHEI). Division of Surface Water, Ecological Assessment Section, Columbus, OH. 23 pp.
- Ohio Environmental Protection Agency (Ohio EPA). 1999. Association between nutrients, habitat, and the aquatic biota in Ohio Rivers and streams. Ohio EPA Technical Bulletin MAS/1999-1-1. Jan. 7, 1999.
- Ohio Environmental Protection Agency (Ohio EPA). 1994. Biological and water quality study of Mill Creek. Ohio EPA Tech. Rept. SWS/1993-12-9. Division of Surface Water, Water Quality and Ecological Assessment Sections, Columbus, Ohio. 86 pp.
- Ohio Environmental Protection Agency (Ohio EPA). 1989a. Biological criteria for the protection of aquatic life. Volume III: standardized biological field sampling and laboratory methods for assessing fish and macroinvertebrate communities, Division of Water Quality Monitoring and Assessment, Columbus, Ohio.
- Ohio Environmental Protection Agency (Ohio EPA). 1989b. Addendum to biological criteria for the protection of aquatic life. Volume II: Users manual for biological field assessment of Ohio surface waters, Division of Water Quality Planning and Assessment, Surface Water Section, Columbus, Ohio.
- Ohio Environmental Protection Agency (Ohio EPA). 1987a. Biological criteria for the protection of aquatic life. Volume I. The role of biological data in water quality assessments. Division of Water Quality Monitoring and Assessment, Surface Water Section, Columbus, Ohio.
- Ohio Environmental Protection Agency (Ohio EPA). 1987b. Biological criteria for the protection of aquatic life. Volume II. Users manual for biological field assessment of Ohio surface waters. Division of Water Quality Monitoring and Assessment, Surface Water Section, Columbus, Ohio.

- Omernik, J. M. 1987. Ecoregions of the conterminous United States. Annals of the Association of American Geographers 77(1): 118-125.
- Rankin, E. T. 1995. The use of habitat assessments in water resource management programs, pages 181-208. in W. Davis and T. Simon (eds.). Biological Assessment and Criteria:

 Tools for Water Resource Planning and Decision Making. Lewis Publishers, Boca Raton, FL.
- Rankin, E.T. 1989. The Qualitative Habitat Evaluation Index (QHEI): Rationale, Methods, and Application. Ohio EPA, Division of Water Quality Planning and Assessment, Ecological Analysis Section, Columbus, Ohio.
- Trautman, M. B. 1981. The fishes of Ohio. The Ohio State Univ. Press, Columbus, OH. 782 pp.
- U.S. Environmental Protection Agency. 1995a. Environmental indicators of water quality in the United States. EPA 841-R-96-002. Office of Water, Washington, DC 20460. 25 pp.
- U.S. Environmental Protection Agency. 1995b. A conceptual framework to support development and use of environmental information in decision-making. EPA 239-R-95-012. Office of Policy, Planning, and Evaluation, Washington, DC 20460. 43 pp.
- Woods, A., J.M. Omernik, C.S. Brockman, T.D. Gerber, W.D. Hosteter, and S.H. Azevedo. 1995. Ecoregions of Ohio and Indiana. U.S. EPA, Corvallis, OR. 2 pp.
- Yoder, C.O. and E.T. Rankin. 2008. Evaluating options for documenting incremental improvement of impaired waters under the TMDL program. MBI Technical Report MBI/2008-11-1. EPA Contract No. 68-C-04-006, Work Assignment 4-68. U.S. EPA, Office of Wetlands, Oceans, and Watersheds, Washington, D.C. 44 pp. + appendices.
- Yoder, C.O. and 9 others. 2005. Changes in fish assemblage status in Ohio's non-wadeable rivers and streams over two decades, pp. 399-429. *in* R. Hughes and J. Rinne (eds.). Historical changes in fish assemblages of large rivers in the America's. American Fisheries Society Symposium Series.
- Yoder, C. O., and DeShon, J. E. .2003. Using biological response signatures within a framework of multiple indicators to assess and diagnose causes and sources of impairments to aquatic assemblages in selected Ohio rivers and streams. Biological response signatures: indicator patterns using aquatic communities, T. P. Simon, ed., CRC Press, Boca Raton, FL., 23–81.
- Yoder, C. O. and M. A Smith. 1999. Using fish assemblages in a state biological assessment and criteria program: essential concepts and considerations, pages 17-56. *in* T.P. Simon (ed.), Assessing the Sustainability and Biological Integrity of Water Resources Using Fish Communities. CRC Press, Boca Raton, FL.

- Yoder, C.O. and E.T. Rankin. 1998. The role of biological indicators in a state water quality management process. J. Env. Mon. Assess. 51(1-2): 61-88.
- Yoder, C.O. and E.T. Rankin. 1995. Biological response signatures and the area of degradation value: new tools for interpreting multimetric data, pages 263-286. in W. Davis and T. Simon (eds.). Biological Assessment and Criteria: Tools for Water Resource Planning and Decision Making. Lewis Publishers, Boca Raton, FL.
- Yoder, C.O. 1995. Policy issues and management applications for biological criteria, pp. 327-344. in W. Davis and T. Simon (eds.). Biological Assessment and Criteria: Tools for Water Resource Planning and Decision Making. Lewis Publishers, Boca Raton, FL.
- Yoder, C.O. 1991. The integrated biosurvey as an approach for the evaluation of aquatic life use attainment and diagnosis of impairment for Ohio surface waters. Biocriteria Symposium on Research and Regulation, U.S. EPA, Offc. Water, Criteria and Stds. Div., Washington, D.C. EPA-440/5-91-005. pp. 110-122.

APPENDIX A

Mill Creek 2021 Raw Chemical Data (Contact Chris Hall, MSDGC at Chris.Hall@cincinnati-oh.gov for Excel files)

MBI/2022-6-8 Mill Creek Bioassessment 2021 3 , 2022

APPENDIX B

Mill Creek 2021 Fish Assemblage Data

B-1: Index of Biotic Integrity (IBI) Metrics and Scores, Modified Index of Well-Being (MIwb) Scores

B-2: Fish Species Grand (all sites combined)

B-3: Fish Species by Sampling Event

Appendix Table B-1. Boatable IBI scores and metrics for the Mill Creek study area sampled in 2021 by MBI.

						Num	ber of				Perce	ent of Indi	ividuals			Rel.No. minus			
Site ID	River Mile	Type [Date a	Drainage area (sq mi)	Total species				Rnd-bodied suckers	•	Tolerant fishes	Omni- vores	Top carnivores	Insect- ivores	DELT anomalies	tolerants /(1.0 km)	IBI	Modified lwb	Source
	Creek - (•	1)																
Year	: 2021																		
	1.69	P 08/	/14/2021	1 163	16(3)	4(5)	3(3)	0(1)	0(1)	0(1)	7(5)	53(1)	14(5)	22(1)	0.0(5)	258(3)	34	9.3	MBI
	0.83	P 08/	/14/202	1 164	16(3)	6(5)	3(3)	0(1)	0(1)	0(1)	10(5)	38(1)	10(5)	47(3)	0.0(5)	104(1) *	34	8.2	MBI
	0.50	P 08/	/14/2021	1 166	11(3)	2(3)	3(3)	0(1)	0(1)	3(1)	5(5)	40(1)	10(3)	48(3)	0.0(5)	90(1) *	30	7.7	MBI
	0.21	P 08/	/14/2021	1 164	8(1)	3(3)	2(1)	0(1)	3(1)	3(1)	13(5)	29(1)	29(5)	42(3)	0.0(5)	77(1) *	28	6.5	MBI

^{♦ -} IBI is low end adjusted.

^{* - &}lt; 200 Total individuals in sample

^{** - &}lt; 50 Total individuals in sample

Appendix Table B-1. Wadeable IBI scores and metrics for sites sampled in the Mill Creek study area in 2021.

						Number	of			Р	ercent of	f Individuals			Rel.No. minus		
River Mile	Туре	Date	Drainage area (sq mi)	Total species	Sunfish species		Intolerant species		Simple Lithophils	Tolerant fishes	Omni- vores	Top carnivores	Insect- ivores	DELT anomalies	tolerants /(0.3km)	IBI	Modified lwb
Mill C	reek - ((23001)															
Year:	2021																
19.22	D	07/08/202	21 26.7	13(3)	2(3)	2(3)	0(1)	2(3)	11(1)	62(1)	27(3)	13.5(5)	51(3)	0.0(5)	138(1)	32	6.0
19.22	D	09/13/202	21 26.7	15(3)	2(3)	1(1)	0(1)	3(3)	9(1)	73(1)	49(1)	5.7(5)	41(3)	0.2(5)	162(1)	28	6.4
18.86	D	09/14/202	21 27.0	13(3)	3(3)	2(3)	0(1)	0(1)	10(1)	69(1)	45(1)	5.3(5)	47(3)	0.4(3)	123(1)	26	6.8
18.86	D	07/07/202	21 27.0	11(3)	3(3)	2(3)	0(1)	0(1)	7(1)	63(1)	38(1)	5.6(5)	54(5)	0.0(5)	71(1)	* 30	5.7
18.37	D	07/07/202	21 27.3	12(3)	4(5)	2(3)	0(1)	1(1)	9(1)	45(3)	19(5)	4.0(3)	72(5)	1.7(1)	146(1)	32	6.7
18.37	D	09/13/202	21 27.3	10(3)	3(3)	2(3)	0(1)	0(1)	2(1)	40(3)	13(5)	6.8(5)	76(5)	0.0(5)	132(1)	36	6.5
17.96	D	07/07/202	21 26.9	12(3)	2(3)	2(3)	0(1)	2(3)	11(1)	68(1)	19(3)	1.8(3)	75(5)	0.0(5)	108(1)	32	6.2
17.96	D	09/13/202	21 26.9	15(3)	3(3)	2(3)	0(1)	3(3)	9(1)	75(1)	21(3)	0.3(1)	76(5)	0.3(5)	122(1)	30	6.7
16.73	D	08/09/202	21 50.5	8(1)	2(3)	1(1)	0(1)	2(1)	2(1)	78(1)	35(1)	0.6(1)	63(5)	0.0(5)	60(1)	22	5.1
15.41	D	08/09/202	21 61.3	4(1)	3(3)	1(1)	0(1)	0(1)	1(1)	66(1)	6(5)	0.0(1)	91(5)	1.1(3)	60(1)	* 24	3.7
13.96	D	08/11/202	21 68.8	16(3)	4(5)	2(3)	0(1)	4(3)	17(1)	49(1)	12(5)	0.3(1)	65(5)	0.0(5)	276(3)	36	7.2
13.96	D	09/14/202	21 68.8	16(3)	4(5)	2(3)	0(1)	3(3)	12(1)	62(1)	16(5)	0.8(1)	63(5)	0.0(5)	149(1)	34	6.9
13.76	D	09/14/202	21 71.6	16(3)	2(3)	2(3)	0(1)	4(3)	18(1)	47(1)	10(5)	1.8(3)	64(5)	0.0(5)	227(3)	36	7.1
13.76	D	07/09/202	21 71.6	11(3)	1(1)	2(3)	0(1)	3(3)	28(3)	34(3)	2(5)	3.0(3)	74(5)	0.0(5)	132(1)	* 36	6.0
13.27	D	08/11/202	21 72.3	12(3)	3(3)	2(3)	0(1)	3(3)	15(1)	72(1)	14(5)	1.9(3)	82(5)	0.0(5)	90(1)	34	6.3
13.27	D	09/15/202	21 72.3	11(3)	3(3)	2(3)	0(1)	1(1)	17(1)	75(1)	13(5)	2.1(3)	79(5)	2.1(1)	54(1)	28	5.5
11.70	D	08/11/202	21 73.9	22(5)	4(5)	3(3)	0(1)	4(3)	10(1)	46(1)	23(3)	0.8(1)	67(5)	0.0(5)	210(3)	36	7.1
11.70	D	09/15/202	21 73.9	20(3)	4(5)	4(5)	0(1)	4(3)	18(3)	38(3)	32(3)	1.6(3)	59(5)	0.0(5)	233(3)	42	7.3
10.48	E	08/12/202	21 115.0	16(3)	3(3)	1(1)	0(1)	6(5)	32(3)	41(1)	0(5)	1.0(1)	89(5)	0.0(5)	124(1)	34	6.7

na - Qualitative data, Modified Iwb not applicable.

^{• -} IBI is low end adjusted.

^{* - &}lt; 200 Total individuals in sample

^{** - &}lt; 50 Total individuals in sample

[•] One or more species excluded from IBI calculation.

Appendix Table B-1. Wadeable IBI scores and metrics for sites sampled in the Mill Creek study area in 2021.

						Number o	of			Р	ercent of	f Individuals			Rel.No. minus		
River Mile	Туре	Date	Drainage area (sq mi)	Total species	Sunfish species	Sucker species	Intolerant species	Darter species	Simple Lithophils	Tolerant fishes	Omni- vores	Top carnivores	Insect- ivores	DELT anomalies	tolerants /(0.3km)	IBI	Modified Iwb
10.48	E	09/15/202	21 115.0	16(3)	3(3)	2(1)	1(1)	5(3)	41(5)	26(3)	4(5)	5.9(5)	88(5)	0.0(5)	126(1)	* 40	7.5
9.24	D	08/12/202	21 119.0	21(3)	3(3)	2(1)	0(1)	6(5)	14(1)	26(3)	13(5)	2.0(3)	76(5)	0.0(5)	380(3)	38	8.1
9.24	D	09/15/202	21 119.0	18(3)	4(5)	1(1)	1(1)	3(3)	10(1)	23(3)	4(5)	1.7(3)	86(5)	0.0(5)	467(3)	38	7.6
8.63	E	08/13/202	21 120.0	17(3)	4(5)	2(1)	0(1)	2(1)	34(3)	30(3)	9(5)	4.0(3)	83(5)	1.0(3)	142(1)	34	8.0
8.63	E	09/15/202	21 120.0	16(3)	4(5)	2(1)	0(1)	2(1)	15(1)	29(3)	14(5)	4.0(3)	82(5)	0.0(5)	248(3)	36	8.2
7.47	D	08/13/202	21 126.0	17(3)	2(3)	2(1)	0(1)	4(3)	8(1)	4(5)	4(5)	0.1(1)	92(5)	0.0(5)	1083(5)	38	7.1
7.47	D	09/16/202	21 126.0	16(3)	2(3)	3(3)	0(1)	3(3)	22(3)	19(5)	1(5)	1.2(3)	97(5)	0.0(5)	399(3)	42	6.6
6.80	D	08/12/202	21 127.0	7(1)	0(1)	2(1)	0(1)	0(1)	3(1)	2(5)	2(5)	0.0(1)	95(5)	0.0(5)	288(3)	30	3.8
6.45	D	08/12/202	21 135.0	3(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(5)	0(5)	0.0(1)	100(5)	0.0(5)	162(1)	* 28	3.7
4.84	D	08/13/202	139.0	10(1)	4(5)	1(1)	0(1)	1(1)	1(1)	40(1)	20(3)	1.3(3)	75(5)	0.0(5)	68(1)	* 28	5.8
4.84	D	09/17/202	139.0	10(1)	4(5)	2(1)	0(1)	0(1)	0(1)	17(5)	28(3)	8.0(5)	62(5)	0.0(5)	189(1)	34	7.3
4.21	D	08/13/202	141.0	12(3)	3(3)	1(1)	0(1)	2(1)	4(1)	15(5)	10(5)	1.6(3)	87(5)	0.0(5)	395(3)	36	5.4
4.21	D	09/17/202	21 141.0	17(3)	3(3)	3(3)	0(1)	3(3)	7(1)	19(5)	12(5)	2.6(3)	84(5)	0.0(5)	599(3)	40	8.5
3.45	D	08/12/202	139.0	13(3)	3(3)	3(3)	0(1)	0(1)	5(1)	30(3)	10(5)	0.7(1)	89(5)	0.0(5)	158(1)	32	6.2
3.45	D	09/16/202	139.0	16(3)	4(5)	1(1)	0(1)	0(1)	2(1)	8(5)	19(3)	2.6(3)	77(5)	0.0(5)	590(3)	36	6.5
3.15	D	08/12/202	21 154.0	12(3)	3(3)	1(1)	0(1)	0(1)	1(1)	17(5)	18(5)	7.8(5)	73(5)	0.9(3)	143(1)	* 34	7.1
3.15	D	09/16/202	21 154.0	17(3)	4(5)	1(1)	1(1)	1(1)	1(1)	8(5)	18(5)	1.7(3)	78(5)	0.2(5)	569(3)	38	7.5
2.50	D	08/11/202	21 154.0	10(1)	1(1)	2(1)	0(1)	1(1)	1(1)	0(5)	4(5)	0.3(1)	70(5)	0.3(5)	480(3)	30	6.9
2.50	D	09/16/202	21 154.0	12(3)	2(3)	3(3)	2(1)	0(1)	1(1)	1(5)	8(5)	0.4(1)	85(5)	0.0(5)	798(5)	38	6.5

West Fork Mill Creek - (23004)

na - Qualitative data, Modified Iwb not applicable.

^{• -} IBI is low end adjusted.

^{* - &}lt; 200 Total individuals in sample

^{** - &}lt; 50 Total individuals in sample

[•] One or more species excluded from IBI calculation.

Appendix Table B-1. Wadeable IBI scores and metrics for sites sampled in the Mill Creek study area in 2021.

						Number	of			Р	ercent of	f Individuals			Rel.No. minus		
River Mile	Туре	Date	Drainage area (sq mi)	Total species			Intolerant species		Simple Lithophils	Tolerant fishes	Omni- vores	Top carnivores	Insect- ivores	DELT anomalies	tolerants /(0.3km)	IBI	Modified lwb
Year:	2021																
0.20	E	08/12/202	21 36.4	14(3)	2(3)	2(3)	0(1)	3(3)	22(3)	73(1)	62(1)	0.0(1)	26(1)	0.0(5)	196(1)	26	7.1

na - Qualitative data, Modified Iwb not applicable.

^{• -} IBI is low end adjusted.

^{* - &}lt; 200 Total individuals in sample

^{** - &}lt; 50 Total individuals in sample

 $[\]ensuremath{\bullet}$ - One or more species excluded from IBI calculation.

Appendix Table B-1. Headwater IBI scores and metrics for sites sampled in the Mill Creek study area in 2021.

						Numb	er of				Perc	ent of Individ	uals		Rel.No.	
Site ID	River Mile Type		Orainage ea (sq mi)	Total species	Minnow species	Headwater species	Sensitive species	Darter & Sculpin species	Simple Lithophils	Tolerant fishes	Omni- vores	Pioneering fishes	Insect- ivores	DELT anomalies	minus tolerants /(0.3km)	IBI
(23-0	001) - Mill C	reek														
Year:	2021															
MC00	26.40 E	07/09/2021	4.1	11(3)	3(3)	0(1)	1(1)	3(5)	4(3)	32(5)	16(3)	45(3)	60(5)	0.0(5)	228(3)	40
MC00	26.40 E	09/16/2021	4.1	12(5)	3(3)	0(1)	1(1)	3(5)	4(3)	23(5)	12(5)	31(3)	78(5)	0.0(5)	428(5)	46
(23-0 Year:	0 06) - East 2021	Fork Mill C	Creek													
MC18	1.14 E	07/08/2021	9.3	9(3)	1(1)	0(1)	1(1)	3(3)	3(3)	43(3)	4(5)	51(3)	84(5)	0.0(5)	252(3)	36
MC18	1.14 E	09/13/2021	9.3	12(3)	2(1)	1(1)	2(1)	4(5)	5(3)	74(1)	41(1)	36(3)	55(5)	0.0(5)	98(1)	30
MC15	0.96 D	07/08/2021	9.3	10(3)	2(1)	0(1)	2(1)	2(3)	4(3)	58(1)	15(5)	47(3)	78(5)	0.0(5)	228(3)	34
MC15	0.96 D	09/13/2021	9.3	13(3)	5(3)	0(1)	3(3)	3(3)	5(3)	77(1)	27(3)	55(3)	64(5)	0.0(5)	174(1)	34
MC14	0.66 E	07/08/2021	9.5	11(3)	2(1)	0(1)	1(1)	2(3)	4(3)	70(1)	19(3)	52(3)	79(5)	0.4(5)	166(1)	30
MC14	0.66 E	09/14/2021	9.5	6(1)	1(1)	0(1)	1(1)	0(1)	3(3)	71(1)	21(3)	48(3)	79(5)	0.0(5)	86(1)	26
MC16	0.39 E	07/07/2021	9.6	10(3)	2(1)	0(1)	2(1)	2(3)	4(3)	79(1)	15(5)	63(1)	81(5)	0.0(5)	53(1)	30
MC16	0.39 E	09/13/2021	9.6	7(1)	0(1)	0(1)	1(1)	1(1)	3(3)	71(1)	10(5)	63(1)	88(5)	0.0(5)	42(1) *	26
(23-0 Year:	0 09) - (Ross 2021	smoyne Cı	reek RM :	14.05) C	ooper Cre	eek										
MR-1	3.57 F	09/17/2021	0.3	3(1)	3(3)	1(1)	0(1)	0(1)	1(3)	65(1)	0(5)	56(1)	0(1)	0.5(5)	129(5)	28
MR-2	3.42 F	09/17/2021	0.4	3(1)	3(3)	1(1)	0(1)	0(1)	1(3)	76(1)	0(5)	60(1)	0(1)	0.2(5)	210(5)	28
MR-3	2.84 F	09/17/2021	0.0	0(0)	0(0)	0(0)	0(0)	0(0)	0(0)	0(0)	0(0)	0(0)	0(0)	0.0(0)	0(0) * *	0
MR-3	2.84 F	10/01/2021	1.1	4(3)	4(5)	1(1)	0(1)	0(1)	1(1)	73(1)	1(5)	68(1)	0(1)	0.0(5)	124(5)	30
MR-5	2.59 F	10/01/2021	1.8	4(1)	4(3)	1(1)	0(1)	0(1)	1(1)	41(3)	0(5)	35(3)	0(1)	0.0(5)	526(5)	30
MR-6	2.13 F	09/24/2021	2.6	5(3)	3(3)	1(1)	0(1)	1(1)	3(3)	48(3)	1(5)	35(3)	1(1)	0.5(3)	784(5)	32
MC118	1.58 F	08/16/2021	4.0	11(3)	5(3)	2(3)	1(1)	4(5)	5(5)	29(5)	5(5)	29(5)	28(3)	0.0(5)	270(3)	46

^{• -} IBI is low end adjusted.

^{* - &}lt; 200 Total individuals in sample

^{** - &}lt; 50 Total individuals in sample

^{• -} One or more species excluded from IBI calculation.

Appendix Table B-1. Headwater IBI scores and metrics for sites sampled in the Mill Creek study area in 2021.

						Numb	er of				Perc	ent of Individ	uals		Rel.No.	
								Darter &							minus	
	River		ainage	Total		Headwater	Sensitive	Sculpin	Simple	Tolerant	Omni-	Pioneering	Insect-	DELT	tolerants	IDI
ID	Mile Type	Date area	a (sq mi)	species	species	species	species	species	Lithophils	fishes	vores	fishes	ivores	anomalies	/(0.3km)	IBI
MC119	0.44 F	08/16/2021	5.4	12(3)	5(3)	2(3)	1(1)	4(5)	5(5)	28(5)	7(5)	22(5)	20(3)	0.0(5)	478(3)	46
(23-0	28) - Trib t	o West Fork	Creek	@ RM 1	.24											
Year:	2021															
MC97	1.49 F	08/16/2021	0.8	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0.0(1)	0(1) * :	* 12
MC109	1.11 F	08/16/2021	0.9	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0.0(1)	0(1) * :	* 12
(23-0	46) - Unna	med Tributa	ary to (R	?ossmoyi	ne Creek	RM14.06)	Cooper C	reek								
Year:	2021															
MR-4b	0.55 F	09/17/2021	0.7	1(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0.0(1)	0(1) * :	* 12
(23-0	68) - Lick F	Run														
Year:	2021															
MC108	1.70 F	08/16/2021	0.2	1(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0.0(1)	0(1) * ;	* 12
MC106	0.98 F	07/09/2021	3.5	2(1)	1(1)	0(1)	0(1)	0(1)	0(1)	97(1)	85(1)	94(1)	15(1)	0.0(5)	2(1) *	16
MC107	0.45 F	07/09/2021	3.6	2(1)	1(1)	0(1)	0(1)	0(1)	0(1)	81(1)	48(1)	81(1)	52(5)	0.0(5)	12(1) *	20

B-1 - 6

^{• -} IBI is low end adjusted.

^{* - &}lt; 200 Total individuals in sample

^{** - &}lt; 50 Total individuals in sample

Appendix B-2: Midwest Biodiversity Institute Fish Species List - Grand Totals

Rivers: Mill Creek; West Fork Mill Creek (Mill Cr. RM 11.57); East Fork Mill Creek; (Rossmoyne Creek (RM 14.05)) Cooper Creek; Trib to West Fork Creet at RM 1.24; Unnamed Trib to (Rossmoyne Creek) Cooper Creek

Years: 2021

Numbe	er of Samples: 66	[Data So	urces:		74; 99		Data Ty	pes:	D; E; F; P	
Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
10-004	LONGNOSE GAR	Р		М		3	0.2	0.02	191	0.68	810.0
20-003	GIZZARD SHAD	0		М		502	39.7	3.33	2148	7.62	54.1
40-002	BIGMOUTH BUFFALO	1		М	С	1	0.0	0.01	57	0.67	2400.0
40-003	BLACK BUFFALO	I		М	С	3	0.2	0.02	402	1.43	1700.0
40-004	SMALLMOUTH BUFFALO	1		М	С	42	3.3	0.28	1674	5.94	504.7
40-005	QUILLBACK CARPSUCKER	0		М	С	7	0.6	0.05	270	0.96	488.5
40-006	RIVER CARPSUCKER	0		М	С	38	3.0	0.25	1114	3.96	371.3
40-009	BLACK REDHORSE	1	I	S	R	1	0.0	0.01	33	0.39	1400.0
40-015	NORTHERN HOG SUCKER	ı	М	S	R	417	10.0	2.77	1300	15.19	129.9
40-016	WHITE SUCKER	0	Т	S	W	367	8.8	2.44	310	3.62	35.2
40-023	SMALLMOUTH REDHORSE	ı	М	S	R	12	1.0	0.08	88	0.31	93.3
43-001	COMMON CARP	0	Т	М	G	908	71.7	6.03	5124	18.18	71.4
43-002	GOLDFISH	0	Т	М	G	2	0.1	0.01	14	0.17	300.0
43-011	WESTERN BLACKNOSE DACE	G	Т	S	N	273	6.6	1.81	11	0.13	1.6
43-013	CREEK CHUB	G	Т	N	N	1052	25.3	6.98	138	1.62	5.4
43-015	SUCKERMOUTH MINNOW	1		S	N	7	0.2	0.05	1	0.02	9.2
43-020	EMERALD SHINER	1		М	N	3170	250.4	21.05	143	0.51	0.5
43-022	ROSYFACE SHINER	1	ı	S	N	1	0.0	0.01	0	0.00	2.0
43-025	STRIPED SHINER	I		S	N	159	3.8	1.06	64	0.76	16.9
43-027	RIVER SHINER	1		S	N	1	0.0	0.01	0	0.00	1.0
43-032	SPOTFIN SHINER	1		М	N	132	3.2	0.88	16	0.19	5.1
43-034	SAND SHINER	I	М	М	N	161	3.9	1.07	9	0.11	2.4
43-039	SILVERJAW MINNOW	1		М	N	1	0.0	0.01	0	0.00	5.0
43-042	FATHEAD MINNOW	0	Т	С	N	46	1.1	0.31	0	0.00	0.1
43-043	BLUNTNOSE MINNOW	0	Т	С	N	445	10.7	2.95	34	0.41	3.2
43-044	CENTRAL STONEROLLER	Н		N	N	1680	40.3	11.15	160	1.88	3.9
43-063	CHANNEL SHINER	1	I	М	N	30	0.7	0.20	1	0.02	1.8
43-142	Spotfin x Scarlet Shiner	1				1	0.0	0.01	0	0.00	2.0
47-002	CHANNEL CATFISH			С	F	129	10.2	0.86	2045	7.26	200.7
47-004	YELLOW BULLHEAD	1	Т	С		68	1.6	0.45	117	1.37	71.9
47-007	FLATHEAD CATFISH	Р		С	F	8	0.6	0.05	227	0.81	360.6
47-008	STONECAT MADTOM	1	ı	С		3	0.1	0.02	0	0.01	10.0
57-001	WESTERN MOSQUITOFISH	1		N	Е	14	0.3	0.09	0	0.00	1.2
74-001	WHITE BASS	Р		М	F	7	0.6	0.05	103	0.37	187.1
74-002	STRIPED BASS	Р		М	Е	2	0.2	0.01	268	0.95	1700.0
74-005	Striped X White Bass				Е	20	0.5	0.13	138	1.62	289.5
77-001	WHITE CRAPPIE	1		С	S	5	0.4	0.03	48	0.17	124.0
77-002	BLACK CRAPPIE	1		С	S	16	1.3	0.11	66	0.24	52.5
77-004	SMALLMOUTH BASS	С	М	С	F	24	0.6	0.16	61	0.72	107.0

B2 - 7 03/31/2022

Appendix B-2: Midwest Biodiversity Institute Fish Species List - Grand Totals

Rivers: Mill Creek; West Fork Mill Creek (Mill Cr. RM 11.57); East Fork Mill Creek; (Rossmoyne Creek (RM 14.05)) Cooper Creek; Trib to West Fork Creet at RM 1.24; Unnamed Trib to (Rossmoyne Creek) Cooper Creek

Years: 2021

Numbe	er of Samples: 66	[Data So	urces:		74; 99		Data Ty _l	pes:	D; E; F; P	
Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
77-005	SPOTTED BASS	С		С	F	28	2.2	0.19	188	0.67	85.0
77-006	LARGEMOUTH BASS	С		С	F	238	18.8	1.58	933	3.31	49.6
77-007	WARMOUTH SUNFISH	С		С	S	1	0.0	0.01	0	0.01	30.0
77-008	GREEN SUNFISH	- 1	Т	С	S	2929	231.4	19.45	2509	8.90	10.8
77-009	BLUEGILL SUNFISH	- 1	Р	С	S	948	74.9	6.29	1075	3.82	14.3
77-010	ORANGESPOTTED SUNFISH	- 1		С	S	6	0.5	0.04	5	0.02	10.8
77-011	LONGEAR SUNFISH	I	М	С	S	223	17.6	1.48	433	1.54	24.6
77-012	REDEAR SUNFISH	I		С	Е	1	0.1	0.01	2	0.01	30.0
77-013	PUMPKINSEED SUNFISH	I	Р	С	S	43	1.0	0.29	11	0.13	11.0
77-015	GREEN SF X BLUEGILL SF					66	5.2	0.44	136	0.48	26.2
77-016	GREEN SF X PUMPKINSEED					4	0.1	0.03	5	0.06	52.5
77-021	GREEN SF X LONGEAR SF					1	0.0	0.01	0	0.01	40.0
80-001	SAUGER	Р		S	F	1	0.1	0.01	55	0.20	700.0
80-011	LOGPERCH	1	М	S	D	10	0.2	0.07	5	0.06	21.5
80-014	JOHNNY DARTER	- 1		С	D	101	2.4	0.67	4	0.05	1.7
80-015	GREENSIDE DARTER	- 1	М	S	D	110	2.6	0.73	18	0.22	7.0
80-022	RAINBOW DARTER	- 1	М	S	D	202	4.9	1.34	11	0.14	2.3
80-023	ORANGETHROAT DARTER	- 1		S	D	212	5.1	1.41	5	0.06	0.9
80-024	FANTAIL DARTER	- 1		С	D	145	3.5	0.96	4	0.05	1.2
85-001	FRESHWATER DRUM		Р	М		34	2.7	0.23	556	1.98	207.3
99-997	Dry Site					0	0.0	0.00	0	0.00	*****
99-999	NO FISH					0	0.0	0.00	0	0.00	*****

No Species: 61 Nat. Species: 51 Hybrids: 4 Total Counted: 15061 Total Rel. Wt.: 22359

B2 - 8 03/31/2022

Site ID: MC00 River: 23-001 Mill Creek RM: 26.40 Date: 07/09/2021

Time Fished: 1204 Distance: 0.150 Drainge (sq mi): 4.4 Depth: 0

Location: Dst. Liberty-Fairfiled Rd. Lat: 39.37520 Long: -84.48260

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
40-016	WHITE SUCKER	0	Т	S	W	17	34.0	10.12	0	0.00	0.0
43-001	COMMON CARP	0	Т	M	G	6	12.0	3.57	0	0.00	0.0
43-025	STRIPED SHINER	1		S	N	7	14.0	4.17	0	0.00	0.0
43-043	BLUNTNOSE MINNOW	0	Т	С	N	4	8.0	2.38	0	0.00	0.0
43-044	CENTRAL STONEROLLER	Н		N	N	28	56.0	16.67	0	0.00	0.0
47-004	YELLOW BULLHEAD	1	Т	С		2	4.0	1.19	0	0.00	0.0
77-006	LARGEMOUTH BASS	С		С	F	12	24.0	7.14	0	0.00	0.0
77-008	GREEN SUNFISH	I	Т	С	S	25	50.0	14.88	0	0.00	0.0
77-009	BLUEGILL SUNFISH	1	Р	С	S	14	28.0	8.33	0	0.00	0.0
80-014	JOHNNY DARTER	- 1		С	D	10	20.0	5.95	0	0.00	0.0
80-022	RAINBOW DARTER	- 1	М	S	D	6	12.0	3.57	0	0.00	0.0
80-023	ORANGETHROAT DARTER	1		S	D	37	74.0	22.02	0	0.00	0.0

No Species: 12 Nat. Species: 11 Hybrids: 0 Total Counted: 168 Total Rel. Wt.: 0

IBI: 40.0 **Mlwb:** N/A

B3 - 9 03/31/2022

Site ID: MC00 River: 23-001 Mill Creek RM: 26.40 Date: 09/16/2021

Time Fished: 1020 Distance: 0.150 Drainge (sq mi): 4.4 Depth: 0

Location: Dst. Liberty-Fairfiled Rd. Lat: 39.37520 Long: -84.48260

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
20-003	GIZZARD SHAD	0		М		4	8.0	1.43	300	1.60	37.5
40-016	WHITE SUCKER	0	Т	S	W	12	24.0	4.30	3520	18.74	146.6
43-001	COMMON CARP	0	Т	М	G	17	34.0	6.09	5520	29.39	162.3
43-025	STRIPED SHINER	1		S	Ν	7	14.0	2.51	460	2.45	32.8
43-043	BLUNTNOSE MINNOW	0	Т	С	N	1	2.0	0.36	10	0.05	5.0
43-044	CENTRAL STONEROLLER	Н		Ν	Ν	16	32.0	5.73	320	1.70	10.0
47-004	YELLOW BULLHEAD	1	Т	С		3	6.0	1.08	60	0.32	10.0
77-006	LARGEMOUTH BASS	С		С	F	12	24.0	4.30	3120	16.61	130.0
77-008	GREEN SUNFISH	1	Т	С	S	32	64.0	11.47	1520	8.09	23.7
77-009	BLUEGILL SUNFISH	1	Р	С	S	110	220.0	39.43	3840	20.45	17.4
80-014	JOHNNY DARTER	1		С	D	9	18.0	3.23	20	0.11	1.1
80-022	RAINBOW DARTER	1	М	S	D	11	22.0	3.94	30	0.16	1.3
80-023	ORANGETHROAT DARTER	I		S	D	45	90.0	16.13	60	0.32	0.6

No Species: 13 Nat. Species: 12 Hybrids: 0 Total Counted: 279 Total Rel. Wt.: 18780

IBI: 46.0 **Mlwb:** N/A

B3 - 10 03/31/2022

Site ID: MC12 River: 23-001 Mill Creek RM: 19.22 Date: 07/08/2021

Time Fished: 1516 Distance: 0.200 Drainge (sq mi): 26.7 Depth: 0

Location: ust. Windisch Rd. Lat: 39.30520 Long: -84.43570

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
40-015	NORTHERN HOG SUCKER	I	М	S	R	2	3.0	0.82	255	6.81	85.0
40-016	WHITE SUCKER	0	Т	S	W	10	15.0	4.10	240	6.41	16.0
43-001	COMMON CARP	0	Т	М	G	53	79.5	21.72	352	9.41	4.4
43-025	STRIPED SHINER	I		S	Ν	9	13.5	3.69	180	4.80	13.3
43-032	SPOTFIN SHINER	1		М	Ν	3	4.5	1.23	30	0.80	6.6
43-034	SAND SHINER	1	M	М	Ν	2	3.0	0.82	9	0.24	3.0
43-043	BLUNTNOSE MINNOW	0	Т	С	Ν	4	6.0	1.64	22	0.60	3.7
43-044	CENTRAL STONEROLLER	Н		Ν	Ν	16	24.0	6.56	30	0.80	1.2
47-004	YELLOW BULLHEAD	I	Т	С		1	1.5	0.41	15	0.40	10.0
77-006	LARGEMOUTH BASS	С		С	F	33	49.5	13.52	105	2.80	2.1
77-008	GREEN SUNFISH	1	Т	С	S	84	126.0	34.43	1890	50.44	15.0
77-009	BLUEGILL SUNFISH	I	Р	С	S	18	27.0	7.38	450	12.01	16.6
77-015	GREEN SF X BLUEGILL SF					3	4.5	1.23	150	4.00	33.3
80-022	RAINBOW DARTER	1	M	S	D	2	3.0	0.82	6	0.16	2.0
80-023	ORANGETHROAT DARTER	I		S	D	4	6.0	1.64	12	0.32	2.0

No Species: 14 Nat. Species: 13 Hybrids: 1 Total Counted: 244 Total Rel. Wt.: 3747

IBI: 32.0 **Mlwb:** 6.0

B3 - 11 03/31/2022

Site ID: MC12 River: 23-001 Mill Creek RM: 19.22 Date: 09/13/2021

Time Fished: 1356 Distance: 0.200 Drainge (sq mi): 26.7 Depth: 0

Location: ust. Windisch Rd. Lat: 39.30520 Long: -84.43570

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
20-003	GIZZARD SHAD	0		М		1	1.5	0.25	60	0.69	40.0
40-016	WHITE SUCKER	0	Т	S	W	15	22.5	3.70	375	4.30	16.6
43-001	COMMON CARP	0	Т	М	G	171	256.5	42.22	3300	37.87	12.8
43-013	CREEK CHUB	G	Т	Ν	N	1	1.5	0.25	15	0.17	10.0
43-025	STRIPED SHINER	I		S	N	19	28.5	4.69	735	8.43	25.7
43-032	SPOTFIN SHINER	1		М	N	2	3.0	0.49	30	0.34	10.0
43-034	SAND SHINER	I	М	М	N	5	7.5	1.23	30	0.34	4.0
43-043	BLUNTNOSE MINNOW	0	Т	С	N	10	15.0	2.47	45	0.52	3.0
43-044	CENTRAL STONEROLLER	Н		Ν	N	13	19.5	3.21	75	0.86	3.8
47-004	YELLOW BULLHEAD	1	Т	С		4	6.0	0.99	270	3.10	45.0
57-001	WESTERN MOSQUITOFISH	I		Ν	Е	2	3.0	0.49	12	0.14	4.0
77-006	LARGEMOUTH BASS	С		С	F	23	34.5	5.68	285	3.27	8.2
77-008	GREEN SUNFISH	I	Т	С	S	96	144.0	23.70	2250	25.82	15.6
77-009	BLUEGILL SUNFISH	1	Р	С	S	31	46.5	7.65	990	11.36	21.2
77-015	GREEN SF X BLUEGILL SF					6	9.0	1.48	225	2.58	25.0
80-014	JOHNNY DARTER	1		С	D	2	3.0	0.49	7	0.09	2.5
80-022	RAINBOW DARTER	I	М	S	D	1	1.5	0.25	3	0.03	2.0
80-023	ORANGETHROAT DARTER	I		S	D	3	4.5	0.74	7	0.09	1.6

No Species: 17 Nat. Species: 15 Hybrids: 1 Total Counted: 405 Total Rel. Wt.: 8715

IBI: 28.0 **Mlwb:** 6.4

B3 - 12 03/31/2022

Site ID: MC10 River: 23-001 Mill Creek RM: 18.86 Date: 07/07/2021

Time Fished: 1657 Distance: 0.200 Drainge (sq mi): 27.0 Depth: 0

Location: ust. Crescentville Rd. Lat: 39.30030 Long: -84.43430

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
40-015	NORTHERN HOG SUCKER	I	М	S	R	1	1.5	0.79	330	2.97	220.0
40-016	WHITE SUCKER	0	Т	S	W	5	7.5	3.97	915	8.25	122.0
43-001	COMMON CARP	0	Т	М	G	25	37.5	19.84	6930	62.47	184.8
43-025	STRIPED SHINER	I		S	N	3	4.5	2.38	210	1.89	46.6
43-032	SPOTFIN SHINER	1		М	N	3	4.5	2.38	15	0.14	3.3
43-043	BLUNTNOSE MINNOW	0	Т	С	N	18	27.0	14.29	90	0.81	3.3
43-044	CENTRAL STONEROLLER	Н		Ν	N	1	1.5	0.79	1	0.01	1.0
47-004	YELLOW BULLHEAD	I	Т	С		3	4.5	2.38	390	3.52	86.6
77-006	LARGEMOUTH BASS	С		С	F	7	10.5	5.56	480	4.33	45.7
77-008	GREEN SUNFISH	I	Т	С	S	28	42.0	22.22	765	6.90	18.2
77-009	BLUEGILL SUNFISH	I	Р	С	S	29	43.5	23.02	915	8.25	21.0
77-010	ORANGESPOTTED SUNFISH	1		С	S	1	1.5	0.79	7	0.07	5.0
77-015	GREEN SF X BLUEGILL SF					2	3.0	1.59	45	0.41	15.0

No Species: 12 Nat. Species: 11 Hybrids: 1 Total Counted: 126 Total Rel. Wt.: 11094

IBI: 30.0 **Mlwb:** 5.7

B3 - 14 03/31/2022

Site ID: MC10 River: 23-001 Mill Creek RM: 18.86 Date: 09/14/2021

Time Fished: 1054 Distance: 0.200 Drainge (sq mi): 27.0 Depth: 0

Location: ust. Crescentville Rd. Lat: 39.30030 Long: -84.43430

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
20-003	GIZZARD SHAD	0		М		3	4.5	1.15	240	2.12	53.3
40-015	NORTHERN HOG SUCKER	1	M	S	R	1	1.5	0.38	165	1.46	110.0
40-016	WHITE SUCKER	0	Т	S	W	19	28.5	7.25	3135	27.76	110.0
43-001	COMMON CARP	0	Т	М	G	77	115.5	29.39	1560	13.81	13.5
43-025	STRIPED SHINER	1		S	N	5	7.5	1.91	120	1.06	16.0
43-032	SPOTFIN SHINER	1		М	N	11	16.5	4.20	75	0.66	4.5
43-034	SAND SHINER	1	M	М	N	2	3.0	0.76	15	0.13	5.0
43-043	BLUNTNOSE MINNOW	0	Т	С	N	18	27.0	6.87	105	0.93	3.8
47-002	CHANNEL CATFISH			С	F	1	1.5	0.38	75	0.66	50.0
47-004	YELLOW BULLHEAD	1	Т	С		2	3.0	0.76	120	1.06	40.0
77-002	BLACK CRAPPIE	1		С	S	1	1.5	0.38	30	0.27	20.0
77-006	LARGEMOUTH BASS	С		С	F	14	21.0	5.34	2400	21.25	114.2
77-008	GREEN SUNFISH	1	Т	С	S	64	96.0	24.43	1680	14.87	17.5
77-009	BLUEGILL SUNFISH	1	Р	С	S	38	57.0	14.50	1215	10.76	21.3
77-015	GREEN SF X BLUEGILL SF					6	9.0	2.29	360	3.19	40.0

No Species: 14 Nat. Species: 13 Hybrids: 1 Total Counted: 262 Total Rel. Wt.: 11295

IBI: 26.0 **Mlwb:** 6.8

B3 - 15 03/31/2022

Site ID: MC08 River: 23-001 Mill Creek RM: 18.37 Date: 07/07/2021

Time Fished: 1915 Distance: 0.200 Drainge (sq mi): 27.3 Depth: 0

Location: ust. 200 m of E.Fk Mill Creek Lat: 39.39300 Long: -84.43530

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
20-003	GIZZARD SHAD	0		М		4	6.0	2.26	1560	19.85	260.0
40-015	NORTHERN HOG SUCKER	1	М	S	R	4	6.0	2.26	795	10.12	132.5
40-016	WHITE SUCKER	0	Т	S	W	4	6.0	2.26	1365	17.37	227.5
43-025	STRIPED SHINER	1		S	N	8	12.0	4.52	150	1.91	12.5
43-043	BLUNTNOSE MINNOW	0	Т	С	N	25	37.5	14.12	99	1.26	2.6
43-044	CENTRAL STONEROLLER	Н		Ν	N	5	7.5	2.82	10	0.13	1.4
77-002	BLACK CRAPPIE	1		С	S	1	1.5	0.56	37	0.48	25.0
77-006	LARGEMOUTH BASS	С		С	F	7	10.5	3.95	21	0.27	2.0
77-008	GREEN SUNFISH	1	Т	С	S	51	76.5	28.81	1725	21.95	22.5
77-009	BLUEGILL SUNFISH	1	Р	С	S	61	91.5	34.46	1800	22.91	19.6
77-013	PUMPKINSEED SUNFISH	1	Р	С	S	1	1.5	0.56	22	0.29	15.0
77-015	GREEN SF X BLUEGILL SF					5	7.5	2.82	270	3.44	36.0
80-014	JOHNNY DARTER	I		С	D	1	1.5	0.56	1	0.02	1.0

No Species: 12 Nat. Species: 12 Hybrids: 1 Total Counted: 177 Total Rel. Wt.: 7857

IBI: 32.0 **Mlwb:** 6.7

B3 - 16 03/31/2022

Site ID: MC08 River: 23-001 Mill Creek RM: 18.37 Date: 09/13/2021

Time Fished: 1580 Distance: 0.200 Drainge (sq mi): 27.3 Depth: 0

Location: ust. 200 m of E.Fk Mill Creek Lat: 39.39300 Long: -84.43530

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	lo. ish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
20-003	GIZZARD SHAD	0		М		15	22.5	10.20	4335	46.41	192.6
40-015	NORTHERN HOG SUCKER	1	M	S	R	1	1.5	0.68	195	2.09	130.0
40-016	WHITE SUCKER	0	Т	S	W	2	3.0	1.36	465	4.98	155.0
43-001	COMMON CARP	0	Т	М	G	2	3.0	1.36	165	1.77	55.0
43-032	SPOTFIN SHINER	1		М	N	1	1.5	0.68	7	0.08	5.0
47-002	CHANNEL CATFISH			С	F	2	3.0	1.36	105	1.12	35.0
47-004	YELLOW BULLHEAD	1	Т	С		1	1.5	0.68	195	2.09	130.0
57-001	WESTERN MOSQUITOFISH	1		Ν	E	1	1.5	0.68	3	0.03	2.0
77-002	BLACK CRAPPIE	1		С	S	3	4.5	2.04	165	1.77	36.6
77-006	LARGEMOUTH BASS	С		С	F	10	15.0	6.80	405	4.34	27.0
77-008	GREEN SUNFISH	1	Т	С	S	54	81.0	36.73	1305	13.97	16.1
77-009	BLUEGILL SUNFISH	1	Р	С	S	50	75.0	34.01	1635	17.50	21.8
77-015	GREEN SF X BLUEGILL SF					5	7.5	3.40	360	3.85	48.0

No Species: 12 Nat. Species: 10 Hybrids: 1 Total Counted: 147 Total Rel. Wt.: 9340

IBI: 36.0 **Mlwb:** 6.5

B3 - 17 03/31/2022

Site ID: MC101 River: 23-001 Mill Creek RM: 17.96 Date: 07/07/2021

Time Fished: 1557 Distance: 0.200 Drainge (sq mi): 42.2 Depth: 0

Location: RR trestel dst. East Fork Mill Creek Lat: 39.28810 Long: -84.43360

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No Fisl		Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
40-015	NORTHERN HOG SUCKER	1	М	S	R	1	5	22.5	6.67	4950	53.70	220.0
40-016	WHITE SUCKER	0	Т	S	W		3	4.5	1.33	720	7.81	160.0
43-001	COMMON CARP	0	Т	М	G	3	88	57.0	16.89	315	3.42	5.5
43-025	STRIPED SHINER	1		S	Ν		3	4.5	1.33	90	0.98	20.0
43-032	SPOTFIN SHINER	1		М	Ν		2	3.0	0.89	22	0.24	7.5
43-043	BLUNTNOSE MINNOW	0	Т	С	Ν		1	1.5	0.44	4	0.05	3.0
43-044	CENTRAL STONEROLLER	Н		Ν	Ν		8	12.0	3.56	45	0.49	3.7
47-004	YELLOW BULLHEAD	I	Т	С			1	1.5	0.44	30	0.33	20.0
57-001	WESTERN MOSQUITOFISH	1		Ν	Е		2	3.0	0.89	6	0.07	2.0
77-006	LARGEMOUTH BASS	С		С	F		4	6.0	1.78	129	1.40	21.5
77-008	GREEN SUNFISH	I	Т	С	S	11	0	165.0	48.89	2190	23.76	13.2
77-009	BLUEGILL SUNFISH	1	Р	С	S	3	32	48.0	14.22	600	6.51	12.5
77-015	GREEN SF X BLUEGILL SF						2	3.0	0.89	105	1.14	35.0
80-023	ORANGETHROAT DARTER	I		S	D		3	4.5	1.33	9	0.10	2.0
80-024	FANTAIL DARTER	I		С	D		1	1.5	0.44	1	0.02	1.0

No Species: 14 Nat. Species: 12 Hybrids: 1 Total Counted: 225 Total Rel. Wt.: 9217

IBI: 32.0 **Mlwb:** 6.2

B3 - 18 03/31/2022

Site ID: MC101 River: 23-001 Mill Creek RM: 17.96 Date: 09/13/2021

Time Fished: 1411 Distance: 0.200 Drainge (sq mi): 42.2 Depth: 0

Location: RR trestel dst. East Fork Mill Creek Lat: 39.28810 Long: -84.43360

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
40-015	NORTHERN HOG SUCKER	1	М	S	R	19	28.5	5.76	4275	28.00	150.0
40-016	WHITE SUCKER	0	Т	S	W	6	9.0	1.82	1020	6.68	113.3
43-001	COMMON CARP	0	Т	М	G	53	79.5	16.06	5100	33.40	64.1
43-025	STRIPED SHINER	1		S	N	2	3.0	0.61	195	1.28	65.0
43-032	SPOTFIN SHINER	I		М	N	2	3.0	0.61	60	0.39	20.0
43-034	SAND SHINER	1	М	М	N	9	13.5	2.73	75	0.49	5.5
43-043	BLUNTNOSE MINNOW	0	Т	С	N	9	13.5	2.73	75	0.49	5.5
43-044	CENTRAL STONEROLLER	Н		Ν	N	9	13.5	2.73	75	0.49	5.5
47-004	YELLOW BULLHEAD	1	Т	С		4	6.0	1.21	450	2.95	75.0
77-002	BLACK CRAPPIE	1		С	S	1	1.5	0.30	150	0.98	100.0
77-006	LARGEMOUTH BASS	С		С	F	1	1.5	0.30	45	0.29	30.0
77-008	GREEN SUNFISH	1	Т	С	S	177	265.5	53.64	2730	17.88	10.2
77-009	BLUEGILL SUNFISH	I	Р	С	S	32	48.0	9.70	945	6.19	19.6
80-014	JOHNNY DARTER	1		С	D	2	3.0	0.61	30	0.20	10.0
80-022	RAINBOW DARTER	1	М	S	D	1	1.5	0.30	15	0.10	10.0
80-023	ORANGETHROAT DARTER	1		S	D	3	4.5	0.91	30	0.20	6.6

No Species: 16 Nat. Species: 15 Hybrids: 0 Total Counted: 330 Total Rel. Wt.: 15270

IBI: 30.0 **Mlwb:** 6.7

B3 - 19 03/31/2022

Site ID: MC06 River: 23-001 Mill Creek RM: 16.73 Date: 08/09/2021

Time Fished: 1751 Distance: 0.200 Drainge (sq mi): 50.5 Depth: 0

Location: ust. E. Sharon Rd. Lat: 39.27050 Long: -84.43230

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No Fis		Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
20-003	GIZZARD SHAD	0		М			4	6.0	2.25	1350	5.91	225.0
40-015	NORTHERN HOG SUCKER	1	M	S	R		3	4.5	1.69	1170	5.12	260.0
43-001	COMMON CARP	0	Т	М	G	;	58	87.0	32.58	15375	67.32	176.7
47-002	CHANNEL CATFISH			С	F		1	1.5	0.56	2100	9.20	1400.0
77-006	LARGEMOUTH BASS	С		С	F		1	1.5	0.56	15	0.07	10.0
77-008	GREEN SUNFISH	1	Т	С	S	8	80	120.0	44.94	2025	8.87	16.8
77-009	BLUEGILL SUNFISH	1	Р	С	S	:	27	40.5	15.17	510	2.23	12.5
77-015	GREEN SF X BLUEGILL SF						1	1.5	0.56	150	0.66	100.0
77-016	GREEN SF X PUMPKINSEED						1	1.5	0.56	120	0.53	80.0
80-014	JOHNNY DARTER	I		С	D		1	1.5	0.56	15	0.07	10.0
80-022	RAINBOW DARTER	I	М	S	D		1	1.5	0.56	7	0.03	5.0

No Species: 9 Nat. Species: 8 Hybrids: 2 Total Counted: 178 Total Rel. Wt.: 22837

IBI: 22.0 **Mlwb:** 5.1

B3 - 20 03/31/2022

Site ID: MC04 River: 23-001 Mill Creek RM: 15.41 Date: 08/09/2021

Time Fished: 1816 Distance: 0.150 Drainge (sq mi): 61.3 Depth: 0

Location: dst. Glendale Milford ExpWay Lat: 39.25350 Long: -84.42580

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
40-015	NORTHERN HOG SUCKER	I	М	S	R	1	2.0	1.12	240	1.11	120.0
43-001	COMMON CARP	0	Т	М	G	5	10.0	5.62	18400	85.42	1840.0
77-008	GREEN SUNFISH	I	Т	С	S	54	108.0	60.67	1300	6.04	12.0
77-009	BLUEGILL SUNFISH	I	Р	С	S	23	46.0	25.84	1060	4.92	23.0
77-013	PUMPKINSEED SUNFISH	I	Р	С	S	3	6.0	3.37	240	1.11	40.0
77-015	GREEN SF X BLUEGILL SF					2	4.0	2.25	200	0.93	50.0
77-016	GREEN SF X PUMPKINSEED					1	2.0	1.12	100	0.46	50.0

No Species: 5 Nat. Species: 4 Hybrids: 2 Total Counted: 89 Total Rel. Wt.: 21540

IBI: 24.0 **Mlwb:** 3.7

B3 - 21 03/31/2022

Site ID: MC11 River: 23-001 Mill Creek RM: 13.96 Date: 08/11/2021

Time Fished: 1650 Distance: 0.200 Drainge (sq mi): 68.8 Depth: 0

Location: ust. Barrett Paving Lat: 39.23790 Long: -84.43820

Species											
Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
40-015	NORTHERN HOG SUCKER	ı	М	S	R	26	39.0	7.20	10890	39.07	279.2
40-016	WHITE SUCKER	0	Т	S	W	9	13.5	2.49	225	0.81	16.6
43-001	COMMON CARP	0	Т	М	G	12	18.0	3.32	11340	40.69	630.0
43-025	STRIPED SHINER	I		S	N	24	36.0	6.65	600	2.15	16.6
43-032	SPOTFIN SHINER	I		М	N	5	7.5	1.39	60	0.22	8.0
43-034	SAND SHINER	I	M	М	Ν	1	1.5	0.28	15	0.05	10.0
43-043	BLUNTNOSE MINNOW	0	Т	С	Ν	24	36.0	6.65	240	0.86	6.6
43-044	CENTRAL STONEROLLER	Н		Ν	Ν	73	109.5	20.22	1650	5.92	15.0
77-002	BLACK CRAPPIE	1		С	S	2	3.0	0.55	15	0.05	5.0
77-006	LARGEMOUTH BASS	С		С	F	1	1.5	0.28	15	0.05	10.0
77-008	GREEN SUNFISH	1	Т	С	S	132	198.0	36.57	2400	8.61	12.1
77-009	BLUEGILL SUNFISH	I	Р	С	S	10	15.0	2.77	180	0.65	12.0
77-013	PUMPKINSEED SUNFISH	1	Р	С	S	1	1.5	0.28	15	0.05	10.0
77-015	GREEN SF X BLUEGILL SF					9	13.5	2.49	120	0.43	8.8
80-014	JOHNNY DARTER	1		С	D	4	6.0	1.11	15	0.05	2.5
80-022	RAINBOW DARTER	1	M	S	D	1	1.5	0.28	7	0.03	5.0
80-023	ORANGETHROAT DARTER	I		S	D	1	1.5	0.28	7	0.03	5.0
80-024	FANTAIL DARTER	I		С	D	26	39.0	7.20	75	0.27	1.9

No Species: 17 Nat. Species: 16 Hybrids: 1 Total Counted: 361 Total Rel. Wt.: 27870

IBI: 36.0 **Mlwb:** 7.2

B3 - 22 03/31/2022

Site ID: MC11 River: 23-001 Mill Creek RM: 13.96 Date: 09/14/2021

Time Fished: 1264 Distance: 0.200 Drainge (sq mi): 68.8 Depth: 0

Location: ust. Barrett Paving Lat: 39.23790 Long: -84.43820

Species		Feed	Toler-	Drood	IBI	No		Dal	0/ 1	Dal	0/ by	A
Code:	Species Name:	Guild	ance	Breed Guild	Group	Fis		Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
40-015	NORTHERN HOG SUCKER	I	М	S	R	1	16	24.0	6.20	4995	43.12	208.1
40-016	WHITE SUCKER	0	Т	S	W		8	12.0	3.10	225	1.94	18.7
43-001	COMMON CARP	0	Т	М	G		3	4.5	1.16	120	1.04	26.6
43-025	STRIPED SHINER	I		S	N		7	10.5	2.71	195	1.68	18.5
43-032	SPOTFIN SHINER	1		М	Ν		1	1.5	0.39	30	0.26	20.0
43-034	SAND SHINER	1	M	М	N		1	1.5	0.39	9	0.08	6.0
43-043	BLUNTNOSE MINNOW	0	Т	С	N	2	29	43.5	11.24	225	1.94	5.1
43-044	CENTRAL STONEROLLER	Н		Ν	N	4	18	72.0	18.60	960	8.29	13.3
47-002	CHANNEL CATFISH			С	F		2	3.0	0.78	2550	22.01	850.0
77-002	BLACK CRAPPIE	I		С	S		1	1.5	0.39	22	0.19	15.0
77-006	LARGEMOUTH BASS	С		С	F		2	3.0	0.78	60	0.52	20.0
77-008	GREEN SUNFISH	1	Т	С	S	11	19	178.5	46.12	1980	17.09	11.0
77-009	BLUEGILL SUNFISH	1	Р	С	S		2	3.0	0.78	30	0.26	10.0
77-013	PUMPKINSEED SUNFISH	1	Р	С	S		1	1.5	0.39	30	0.26	20.0
77-015	GREEN SF X BLUEGILL SF						4	6.0	1.55	120	1.04	20.0
80-014	JOHNNY DARTER	1		С	D		5	7.5	1.94	7	0.06	1.0
80-023	ORANGETHROAT DARTER	1		S	D		1	1.5	0.39	3	0.03	2.0
80-024	FANTAIL DARTER	I		С	D		8	12.0	3.10	22	0.19	1.8

No Species: 17 Nat. Species: 16 Hybrids: 1 Total Counted: 258 Total Rel. Wt.: 11584

IBI: 34.0 **Mlwb:** 6.9

B3 - 23 03/31/2022

Site ID: MC104 River: 23-001 Mill Creek RM: 13.76 Date: 07/09/2021

Time Fished: 1715 Distance: 0.200 Drainge (sq mi): 71.6 Depth: 0

Location: immediately dst. SSO 700 outfall Lat: 39.23550 Long: -84.43990

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
40-015	NORTHERN HOG SUCKER	I	М	S	R	31	46.5	23.31	9180	86.04	197.4
40-016	WHITE SUCKER	0	Т	S	W	2	3.0	1.50	304	2.85	101.5
43-001	COMMON CARP	0	Т	М	G	1	1.5	0.75	0	0.00	0.0
43-032	SPOTFIN SHINER	1		М	N	2	3.0	1.50	9	0.08	3.0
43-034	SAND SHINER	1	M	М	N	6	9.0	4.51	15	0.14	1.6
43-044	CENTRAL STONEROLLER	Н		Ν	N	28	42.0	21.05	75	0.70	1.7
47-004	YELLOW BULLHEAD	I	Т	С		1	1.5	0.75	450	4.22	300.0
57-001	WESTERN MOSQUITOFISH	1		Ν	E	1	1.5	0.75	3	0.03	2.0
77-006	LARGEMOUTH BASS	С		С	F	4	6.0	3.01	15	0.14	2.5
77-008	GREEN SUNFISH	1	Т	С	S	41	61.5	30.83	585	5.48	9.5
80-014	JOHNNY DARTER	I		С	D	2	3.0	1.50	6	0.06	2.0
80-023	ORANGETHROAT DARTER	I		S	D	4	6.0	3.01	12	0.11	2.0
80-024	FANTAIL DARTER	I		С	D	10	15.0	7.52	15	0.14	1.0

No Species: 13 Nat. Species: 11 Hybrids: 0 Total Counted: 133 Total Rel. Wt.: 10669

IBI: 36.0 **Mlwb:** 6.0

B3 - 24 03/31/2022

Site ID: MC104 River: 23-001 Mill Creek RM: 13.76 Date: 09/14/2021

Time Fished: 1707 Distance: 0.200 Drainge (sq mi): 71.6 Depth: 0

Location: immediately dst. SSO 700 outfall Lat: 39.23550 Long: -84.43990

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
40-015	NORTHERN HOG SUCKER	I	М	S	R	22	33.0	7.75	6705	31.37	203.1
40-016	WHITE SUCKER	0	Т	S	W	7	10.5	2.46	315	1.47	30.0
43-001	COMMON CARP	0	Т	M	G	5	7.5	1.76	10740	50.25	1432.0
43-013	CREEK CHUB	G	Т	N	Ν	1	1.5	0.35	15	0.07	10.0
43-025	STRIPED SHINER	I		S	Ν	12	18.0	4.23	300	1.40	16.6
43-032	SPOTFIN SHINER	I		M	Ν	6	9.0	2.11	75	0.35	8.3
43-034	SAND SHINER	I	M	M	Ν	9	13.5	3.17	45	0.21	3.3
43-043	BLUNTNOSE MINNOW	0	Т	С	Ν	16	24.0	5.63	135	0.63	5.6
43-044	CENTRAL STONEROLLER	Н		N	Ν	65	97.5	22.89	930	4.35	9.5
47-004	YELLOW BULLHEAD	I	Т	С		2	3.0	0.70	435	2.04	145.0
77-006	LARGEMOUTH BASS	С		С	F	5	7.5	1.76	90	0.42	12.0
77-008	GREEN SUNFISH	I	Т	С	S	102	153.0	35.92	1395	6.53	9.1
77-013	PUMPKINSEED SUNFISH	I	Р	С	S	1	1.5	0.35	15	0.07	10.0
77-015	GREEN SF X BLUEGILL SF					1	1.5	0.35	22	0.11	15.0
77-016	GREEN SF X PUMPKINSEED					1	1.5	0.35	105	0.49	70.0
80-015	GREENSIDE DARTER	I	M	S	D	1	1.5	0.35	7	0.04	5.0
80-022	RAINBOW DARTER	I	M	S	D	7	10.5	2.46	7	0.04	0.7
80-023	ORANGETHROAT DARTER	I		S	D	1	1.5	0.35	4	0.02	3.0
80-024	FANTAIL DARTER	1		С	D	20	30.0	7.04	30	0.14	1.0

No Species: 17 Nat. Species: 16 Hybrids: 2 Total Counted: 284 Total Rel. Wt.: 21372

IBI: 36.0 **Mlwb:** 7.1

B3 - 25 03/31/2022

Site ID: MC02 River: 23-001 Mill Creek RM: 13.27 Date: 08/11/2021

Time Fished: 1890 Distance: 0.200 Drainge (sq mi): 72.3 Depth: 0

Location: dst. W. Columbia Rd./ Koening Park Lat: 39.22990 Long: -84.44580

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
40-015	NORTHERN HOG SUCKER	I	М	S	R	12	18.0	5.61	3900	12.18	216.6
40-016	WHITE SUCKER	0	Т	S	W	19	28.5	8.88	1650	5.15	57.8
43-001	COMMON CARP	0	Т	М	G	9	13.5	4.21	18165	56.73	1345.5
43-002	GOLDFISH	0	Т	М	G	1	1.5	0.47	900	2.81	600.0
43-034	SAND SHINER	1	M	М	N	3	4.5	1.40	22	0.07	5.0
47-002	CHANNEL CATFISH			С	F	3	4.5	1.40	4575	14.29	1016.6
47-004	YELLOW BULLHEAD	1	Т	С		2	3.0	0.93	195	0.61	65.0
77-006	LARGEMOUTH BASS	С		С	F	4	6.0	1.87	75	0.23	12.5
77-008	GREEN SUNFISH	1	Т	С	S	123	184.5	57.48	2025	6.32	10.9
77-009	BLUEGILL SUNFISH	1	Р	С	S	8	12.0	3.74	210	0.66	17.5
77-013	PUMPKINSEED SUNFISH	1	Р	С	S	12	18.0	5.61	105	0.33	5.8
77-015	GREEN SF X BLUEGILL SF					3	4.5	1.40	150	0.47	33.3
80-014	JOHNNY DARTER	1		С	D	12	18.0	5.61	30	0.09	1.6
80-023	ORANGETHROAT DARTER	1		S	D	2	3.0	0.93	15	0.05	5.0
80-024	FANTAIL DARTER	I		С	D	1	1.5	0.47	3	0.01	2.0

No Species: 14 Nat. Species: 12 Hybrids: 1 Total Counted: 214 Total Rel. Wt.: 32020

IBI: 34.0 **Mlwb:** 6.3

B3 - 26 03/31/2022

Site ID: MC02 River: 23-001 Mill Creek RM: 13.27 Date: 09/15/2021

Time Fished: 1510 Distance: 0.200 Drainge (sq mi): 72.3 Depth: 0

Location: dst. W. Columbia Rd./ Koening Park Lat: 39.22990 Long: -84.44580

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
40-015	NORTHERN HOG SUCKER	I	М	S	R	17	25.5	11.97	5655	17.72	221.7
40-016	WHITE SUCKER	0	Т	S	W	6	9.0	4.23	2310	7.24	256.6
43-001	COMMON CARP	0	Т	М	G	11	16.5	7.75	19350	60.65	1172.7
43-043	BLUNTNOSE MINNOW	0	Т	С	N	2	3.0	1.41	7	0.02	2.5
43-044	CENTRAL STONEROLLER	Н		N	Ν	3	4.5	2.11	45	0.14	10.0
47-002	CHANNEL CATFISH			С	F	3	4.5	2.11	3015	9.45	670.0
47-004	YELLOW BULLHEAD	1	Т	С		1	1.5	0.70	45	0.14	30.0
57-001	WESTERN MOSQUITOFISH	1		N	E	1	1.5	0.70	1	0.00	1.0
77-002	BLACK CRAPPIE	1		С	S	1	1.5	0.70	135	0.42	90.0
77-006	LARGEMOUTH BASS	С		С	F	3	4.5	2.11	75	0.24	16.6
77-008	GREEN SUNFISH	1	Т	С	S	86	129.0	60.56	1200	3.76	9.3
77-013	PUMPKINSEED SUNFISH	1	Р	С	S	5	7.5	3.52	30	0.09	4.0
77-015	GREEN SF X BLUEGILL SF					1	1.5	0.70	15	0.05	10.0
77-016	GREEN SF X PUMPKINSEED					1	1.5	0.70	15	0.05	10.0
80-023	ORANGETHROAT DARTER	I		S	D	1	1.5	0.70	7	0.02	5.0

No Species: 13 Nat. Species: 11 Hybrids: 2 Total Counted: 142 Total Rel. Wt.: 31906

IBI: 28.0 **Mlwb:** 5.5

B3 - 27 03/31/2022

Site ID: MC01 River: 23-001 Mill Creek RM: 11.70 Date: 08/11/2021

Time Fished: 1884 Distance: 0.200 Drainge (sq mi): 73.9 Depth: 0

Location: dst. E. Galbraith Rd. Lat: 39.21140 Long: -84.45560

Species Code:	Species Name:	Feed	Toler-	Breed	IBI	No.	Rel.	% by	Rel.	% by	Av.
	'	Guild	ance	Guild	Group	Fish	No.	No.	Wt.	Wt.	<u>Wt</u> .
20-003	GIZZARD SHAD	0		М		17	25.5	6.59	1920	5.66	75.2
40-006	RIVER CARPSUCKER	0		М	С	1	1.5	0.39	1800	5.31	1200.0
40-015	NORTHERN HOG SUCKER	I	M	S	R	8	12.0	3.10	2400	7.08	200.0
40-016	WHITE SUCKER	0	Т	S	W	1	1.5	0.39	75	0.22	50.0
43-001	COMMON CARP	0	Т	М	G	39	58.5	15.12	18750	55.31	320.5
43-020	EMERALD SHINER	1		М	Ν	38	57.0	14.73	75	0.22	1.3
43-025	STRIPED SHINER	1		S	N	1	1.5	0.39	15	0.04	10.0
43-032	SPOTFIN SHINER	1		М	N	8	12.0	3.10	90	0.27	7.5
43-034	SAND SHINER	I	M	М	N	1	1.5	0.39	15	0.04	10.0
43-043	BLUNTNOSE MINNOW	0	Т	С	N	1	1.5	0.39	15	0.04	10.0
43-044	CENTRAL STONEROLLER	Н		Ν	N	22	33.0	8.53	420	1.24	12.7
47-002	CHANNEL CATFISH			С	F	2	3.0	0.78	3000	8.85	1000.0
47-004	YELLOW BULLHEAD	I	Т	С		1	1.5	0.39	120	0.35	80.0
77-006	LARGEMOUTH BASS	С		С	F	2	3.0	0.78	30	0.09	10.0
77-008	GREEN SUNFISH	1	Т	С	S	76	114.0	29.46	1425	4.20	12.5
77-009	BLUEGILL SUNFISH	1	Р	С	S	12	18.0	4.65	315	0.93	17.5
77-011	LONGEAR SUNFISH	1	M	С	S	5	7.5	1.94	195	0.58	26.0
77-013	PUMPKINSEED SUNFISH	1	Р	С	S	6	9.0	2.33	90	0.27	10.0
80-015	GREENSIDE DARTER	I	M	S	D	8	12.0	3.10	105	0.31	8.7
80-022	RAINBOW DARTER	I	M	S	D	6	9.0	2.33	30	0.09	3.3
80-023	ORANGETHROAT DARTER	I		S	D	1	1.5	0.39	7	0.02	5.0
80-024	FANTAIL DARTER	I		С	D	1	1.5	0.39	7	0.02	5.0
85-001	FRESHWATER DRUM		Р	М		1	1.5	0.39	3000	8.85	2000.0

No Species: 23 Nat. Species: 22 Hybrids: 0 Total Counted: 258 Total Rel. Wt.: 33900

IBI: 36.0 **Mlwb:** 7.1

B3 - 28 03/31/2022

Site ID: MC01 River: 23-001 Mill Creek RM: 11.70 Date: 09/15/2021

Time Fished: 1714 Distance: 0.200 Drainge (sq mi): 73.9 Depth: 0

Location: dst. E. Galbraith Rd. Lat: 39.21140 Long: -84.45560

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
20-003	GIZZARD SHAD	0		М		41	61.5	16.53	5025	15.30	81.7
40-006	RIVER CARPSUCKER	0		М	С	1	1.5	0.40	1500	4.57	1000.0
40-015	NORTHERN HOG SUCKER	1	M	S	R	33	49.5	13.31	8025	24.44	162.1
40-016	WHITE SUCKER	0	Т	S	W	2	3.0	0.81	75	0.23	25.0
40-023	SMALLMOUTH REDHORSE	1	M	S	R	1	1.5	0.40	210	0.64	140.0
43-001	COMMON CARP	0	Т	М	G	32	48.0	12.90	14025	42.71	292.1
43-020	EMERALD SHINER	1		М	Ν	26	39.0	10.48	75	0.23	1.9
43-025	STRIPED SHINER	1		S	N	3	4.5	1.21	105	0.32	23.3
43-032	SPOTFIN SHINER	I		М	Ν	3	4.5	1.21	30	0.09	6.6
43-043	BLUNTNOSE MINNOW	0	Т	С	Ν	3	4.5	1.21	15	0.05	3.3
43-044	CENTRAL STONEROLLER	Н		Ν	Ν	19	28.5	7.66	120	0.37	4.2
47-004	YELLOW BULLHEAD	1	Т	С		4	6.0	1.61	765	2.33	127.5
77-006	LARGEMOUTH BASS	С		С	F	4	6.0	1.61	765	2.33	127.5
77-008	GREEN SUNFISH	1	Т	С	S	52	78.0	20.97	1560	4.75	20.0
77-009	BLUEGILL SUNFISH	1	Р	С	S	4	6.0	1.61	150	0.46	25.0
77-011	LONGEAR SUNFISH	1	M	С	S	6	9.0	2.42	165	0.50	18.3
77-013	PUMPKINSEED SUNFISH	1	Р	С	S	7	10.5	2.82	120	0.37	11.4
80-011	LOGPERCH	1	M	S	D	1	1.5	0.40	45	0.14	30.0
80-015	GREENSIDE DARTER	1	M	S	D	3	4.5	1.21	45	0.14	10.0
80-022	RAINBOW DARTER	I	М	S	D	2	3.0	0.81	15	0.05	5.0
80-024	FANTAIL DARTER	I		С	D	1	1.5	0.40	3	0.01	2.0

No Species: 21 Nat. Species: 20 Hybrids: 0 Total Counted: 248 Total Rel. Wt.: 32838

IBI: 42.0 **Mlwb:** 7.3

B3 - 29 03/31/2022

Site ID: MC80 River: 23-001 Mill Creek RM: 10.48 Date: 08/12/2021

Time Fished: 2342 Distance: 0.150 Drainge (sq mi): 115.0 Depth: 0

Location: dst. Anthony Wayne Ave. Lat: 39.20210 Long: -84.48130

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
40-015	NORTHERN HOG SUCKER	I	М	S	R	17	34.0	16.19	6740	63.77	198.2
43-020	EMERALD SHINER	1		М	Ν	3	6.0	2.86	20	0.19	3.3
43-032	SPOTFIN SHINER	1		М	Ν	1	2.0	0.95	20	0.19	10.0
43-034	SAND SHINER	1	М	М	Ν	1	2.0	0.95	20	0.19	10.0
43-044	CENTRAL STONEROLLER	Н		Ν	Ν	6	12.0	5.71	120	1.14	10.0
47-002	CHANNEL CATFISH			С	F	3	6.0	2.86	1040	9.84	173.3
77-004	SMALLMOUTH BASS	С	М	С	F	1	2.0	0.95	80	0.76	40.0
77-008	GREEN SUNFISH	1	Т	С	S	43	86.0	40.95	1600	15.14	18.6
77-009	BLUEGILL SUNFISH	1	Р	С	S	4	8.0	3.81	360	3.41	45.0
77-011	LONGEAR SUNFISH	1	М	С	S	5	10.0	4.76	160	1.51	16.0
77-015	GREEN SF X BLUEGILL SF					2	4.0	1.90	80	0.76	20.0
80-011	LOGPERCH	1	М	S	D	2	4.0	1.90	100	0.95	25.0
80-014	JOHNNY DARTER	1		С	D	1	2.0	0.95	10	0.09	5.0
80-015	GREENSIDE DARTER	1	М	S	D	10	20.0	9.52	160	1.51	8.0
80-022	RAINBOW DARTER	1	М	S	D	4	8.0	3.81	40	0.38	5.0
80-023	ORANGETHROAT DARTER	1		S	D	1	2.0	0.95	10	0.09	5.0
80-024	FANTAIL DARTER	I		С	D	1	2.0	0.95	10	0.09	5.0

No Species: 16 Nat. Species: 16 Hybrids: 1 Total Counted: 105 Total Rel. Wt.: 10570

IBI: 34.0 **Mlwb:** 6.7

B3 - 30 03/31/2022

Site ID: MC80 River: 23-001 Mill Creek RM: 10.48 Date: 09/15/2021

Time Fished: 1250 Distance: 0.150 Drainge (sq mi): 115.0 Depth: 0

Location: dst. Anthony Wayne Ave. Lat: 39.20210 Long: -84.48130

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	-	tel. Io.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
20-003	GIZZARD SHAD	0		М			3	6.0	3.53	700	4.86	116.6
40-009	BLACK REDHORSE	1	I	S	R		1	2.0	1.18	2800	19.46	1400.0
40-015	NORTHERN HOG SUCKER	1	M	S	R	1	6	32.0	18.82	7400	51.42	231.2
43-020	EMERALD SHINER	1		М	Ν	1	1 :	22.0	12.94	40	0.28	1.8
43-032	SPOTFIN SHINER	1		М	Ν		1	2.0	1.18	20	0.14	10.0
43-044	CENTRAL STONEROLLER	Н		Ν	Ν		1	2.0	1.18	100	0.69	50.0
77-004	SMALLMOUTH BASS	С	М	С	F	;	2	4.0	2.35	1060	7.37	265.0
77-005	SPOTTED BASS	С		С	F	;	3	6.0	3.53	420	2.92	70.0
77-008	GREEN SUNFISH	1	Т	С	S	2	2 4	44.0	25.88	1220	8.48	27.7
77-009	BLUEGILL SUNFISH	1	Р	С	S		1	2.0	1.18	200	1.39	100.0
77-011	LONGEAR SUNFISH	1	М	С	S		1	2.0	1.18	60	0.42	30.0
77-015	GREEN SF X BLUEGILL SF						1	2.0	1.18	120	0.83	60.0
80-011	LOGPERCH	1	M	S	D	;	2	4.0	2.35	100	0.69	25.0
80-014	JOHNNY DARTER	1		С	D	;	2	4.0	2.35	10	0.07	2.5
80-015	GREENSIDE DARTER	1	M	S	D		6	12.0	7.06	60	0.42	5.0
80-022	RAINBOW DARTER	1	M	S	D	1	0 :	20.0	11.76	70	0.49	3.5
80-024	FANTAIL DARTER	I		С	D		2	4.0	2.35	10	0.07	2.5

No Species: 16 Nat. Species: 16 Hybrids: 1 Total Counted: 85 Total Rel. Wt.: 14390

IBI: 40.0 **Mlwb:** 7.5

B3 - 31 03/31/2022

Site ID: MC105 River: 23-001 Mill Creek RM: 9.24 Date: 08/12/2021

Time Fished: 1565 Distance: 0.200 Drainge (sq mi): 119.0 Depth: 0

Location: dst. Congress Run Lat: 39.20290 Long: -84.48640

Species											
Code:	Species Name:	Feed	Toler-	Breed	IBI	No.	Rel.	% by	Rel.	% by	Av.
	<u>'</u>	Guild	ance	Guild	Group	Fish	No.	No.	Wt.	Wt.	Wt.
20-003	GIZZARD SHAD	0		М		5	7.5	1.45	495	12.18	66.0
40-015	NORTHERN HOG SUCKER	I	М	S	R	7	10.5	2.03	300	7.38	28.5
40-016	WHITE SUCKER	0	Т	S	W	1	1.5	0.29	15	0.37	10.0
43-020	EMERALD SHINER	- 1		М	N	130	195.0	37.79	315	7.75	1.6
43-025	STRIPED SHINER	1		S	N	3	4.5	0.87	34	0.85	7.6
43-032	SPOTFIN SHINER	1		М	N	9	13.5	2.62	75	1.85	5.5
43-034	SAND SHINER	1	М	М	N	15	22.5	4.36	58	1.44	2.6
43-043	BLUNTNOSE MINNOW	0	Т	С	N	40	60.0	11.63	210	5.17	3.5
43-044	CENTRAL STONEROLLER	Н		Ν	Ν	28	42.0	8.14	345	8.49	8.2
43-142	Spotfin x Scarlet Shiner	1				1	1.5	0.29	3	0.07	2.0
47-004	YELLOW BULLHEAD	1	Т	С		1	1.5	0.29	75	1.85	50.0
77-004	SMALLMOUTH BASS	С	М	С	F	3	4.5	0.87	450	11.07	100.0
77-006	LARGEMOUTH BASS	С		С	F	4	6.0	1.16	345	8.49	57.5
77-008	GREEN SUNFISH	I	Т	С	S	49	73.5	14.24	930	22.88	12.6
77-009	BLUEGILL SUNFISH	1	Р	С	S	2	3.0	0.58	15	0.37	5.0
77-011	LONGEAR SUNFISH	1	М	С	S	1	1.5	0.29	45	1.11	30.0
80-011	LOGPERCH	1	М	S	D	1	1.5	0.29	30	0.74	20.0
80-014	JOHNNY DARTER	1		С	D	7	10.5	2.03	15	0.37	1.4
80-015	GREENSIDE DARTER	1	М	S	D	21	31.5	6.10	210	5.17	6.6
80-022	RAINBOW DARTER	1	М	S	D	12	18.0	3.49	75	1.85	4.1
80-023	ORANGETHROAT DARTER	1		S	D	2	3.0	0.58	15	0.37	5.0
80-024	FANTAIL DARTER	1		С	D	2	3.0	0.58	9	0.22	3.0

No Species: 21 Nat. Species: 21 Hybrids: 0 Total Counted: 344 Total Rel. Wt.: 4065

IBI: 38.0 **Mlwb:** 8.1

B3 - 32 03/31/2022

Site ID: MC105 River: 23-001 Mill Creek RM: 9.24 Date: 09/15/2021

Time Fished: 1565 Distance: 0.200 Drainge (sq mi): 119.0 Depth: 0

Location: dst. Congress Run Lat: 39.20290 Long: -84.48640

Species											
Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
40-015	NORTHERN HOG SUCKER	I	М	S	R	3	4.5	0.74	1350	13.88	300.0
43-020	EMERALD SHINER	- 1		М	N	208	312.0	51.36	480	4.94	1.5
43-022	ROSYFACE SHINER	- 1	I	S	N	1	1.5	0.25	3	0.03	2.0
43-032	SPOTFIN SHINER	1		М	N	7	10.5	1.73	75	0.77	7.1
43-034	SAND SHINER	- 1	M	М	N	6	9.0	1.48	30	0.31	3.3
43-039	SILVERJAW MINNOW	- 1		М	N	1	1.5	0.25	7	0.08	5.0
43-043	BLUNTNOSE MINNOW	0	Т	С	N	17	25.5	4.20	75	0.77	2.9
43-044	CENTRAL STONEROLLER	Н		Ν	N	28	42.0	6.91	465	4.78	11.0
47-002	CHANNEL CATFISH			С	F	4	6.0	0.99	4830	49.68	805.0
77-004	SMALLMOUTH BASS	С	M	С	F	4	6.0	0.99	675	6.94	112.5
77-006	LARGEMOUTH BASS	С		С	F	3	4.5	0.74	510	5.25	113.3
77-008	GREEN SUNFISH	1	Т	С	S	77	115.5	19.01	825	8.49	7.1
77-009	BLUEGILL SUNFISH	1	Р	С	S	1	1.5	0.25	15	0.15	10.0
77-011	LONGEAR SUNFISH	1	M	С	S	1	1.5	0.25	37	0.39	25.0
77-013	PUMPKINSEED SUNFISH	- 1	Р	С	S	1	1.5	0.25	15	0.15	10.0
77-015	GREEN SF X BLUEGILL SF					1	1.5	0.25	30	0.31	20.0
80-014	JOHNNY DARTER	1		С	D	5	7.5	1.23	15	0.15	2.0
80-015	GREENSIDE DARTER	1	M	S	D	18	27.0	4.44	180	1.85	6.6
80-022	RAINBOW DARTER	I	М	S	D	19	28.5	4.69	105	1.08	3.6

No Species: 18 Nat. Species: 18 Hybrids: 1 Total Counted: 405 Total Rel. Wt.: 9723

IBI: 38.0 **Mlwb:** 7.6

B3 - 33 03/31/2022

Site ID: MC79 River: 23-001 Mill Creek RM: 8.63 Date: 08/13/2021

Time Fished: 1879 Distance: 0.150 Drainge (sq mi): 120.0 Depth: 0

Location: dst. Este Ave. Lat: 39.19500 Long: -84.48900

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
20-003	GIZZARD SHAD	0		М	•	6	12.0	5.94	1280	4.66	106.6
40-015	NORTHERN HOG SUCKER	1	M	S	R	24	48.0	23.76	9550	34.74	198.9
40-023	SMALLMOUTH REDHORSE	1	M	S	R	1	2.0	0.99	280	1.02	140.0
43-001	COMMON CARP	0	Т	М	G	2	4.0	1.98	8000	29.10	2000.0
43-020	EMERALD SHINER	1		М	N	2	4.0	1.98	20	0.07	5.0
43-032	SPOTFIN SHINER	1		М	N	3	6.0	2.97	100	0.36	16.6
43-043	BLUNTNOSE MINNOW	0	Т	С	N	1	2.0	0.99	10	0.04	5.0
43-044	CENTRAL STONEROLLER	Н		N	N	1	2.0	0.99	20	0.07	10.0
47-002	CHANNEL CATFISH			С	F	2	4.0	1.98	3600	13.10	900.0
47-004	YELLOW BULLHEAD	1	Т	С		3	6.0	2.97	760	2.76	126.6
77-004	SMALLMOUTH BASS	С	M	С	F	2	4.0	1.98	900	3.27	225.0
77-005	SPOTTED BASS	С		С	F	1	2.0	0.99	240	0.87	120.0
77-007	WARMOUTH SUNFISH	С		С	S	1	2.0	0.99	60	0.22	30.0
77-008	GREEN SUNFISH	I	Т	С	S	24	48.0	23.76	1120	4.07	23.3
77-009	BLUEGILL SUNFISH	I	Р	С	S	7	14.0	6.93	460	1.67	32.8
77-011	LONGEAR SUNFISH	I	M	С	S	11	22.0	10.89	830	3.02	37.7
77-015	GREEN SF X BLUEGILL SF					1	2.0	0.99	60	0.22	30.0
80-015	GREENSIDE DARTER	1	M	S	D	8	16.0	7.92	140	0.51	8.7
80-022	RAINBOW DARTER	ı	М	S	D	1	2.0	0.99	60	0.22	30.0

No Species: 18 Nat. Species: 17 Hybrids: 1 Total Counted: 101 Total Rel. Wt.: 27490

IBI: 34.0 **Mlwb:** 8.0

B3 - 34 03/31/2022

Site ID: MC79 River: 23-001 Mill Creek RM: 8.63 Date: 09/15/2021

Time Fished: 2043 Distance: 0.150 Drainge (sq mi): 120.0 Depth: 0

Location: dst. Este Ave. Lat: 39.19500 Long: -84.48900

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	lo. sh	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
20-003	GIZZARD SHAD	0		М		22	44.0	12.64	5600	22.19	127.2
40-006	RIVER CARPSUCKER	0		М	С	1	2.0	0.57	2200	8.72	1100.0
40-015	NORTHERN HOG SUCKER	1	M	S	R	18	36.0	10.34	7400	29.33	205.5
43-001	COMMON CARP	0	Т	М	G	2	4.0	1.15	4800	19.02	1200.0
43-020	EMERALD SHINER	1		М	Ν	41	82.0	23.56	120	0.48	1.4
43-032	SPOTFIN SHINER	1		М	Ν	4	8.0	2.30	40	0.16	5.0
43-034	SAND SHINER	1	M	М	Ν	1	2.0	0.57	4	0.02	2.0
47-004	YELLOW BULLHEAD	1	Т	С		1	2.0	0.57	100	0.40	50.0
77-002	BLACK CRAPPIE	1		С	S	1	2.0	0.57	60	0.24	30.0
77-004	SMALLMOUTH BASS	С	M	С	F	3	6.0	1.72	760	3.01	126.6
77-005	SPOTTED BASS	С		С	F	3	6.0	1.72	680	2.69	113.3
77-006	LARGEMOUTH BASS	С		С	F	1	2.0	0.57	40	0.16	20.0
77-008	GREEN SUNFISH	1	Т	С	S	47	94.0	27.01	1840	7.29	19.5
77-009	BLUEGILL SUNFISH	1	Р	С	S	3	6.0	1.72	200	0.79	33.3
77-011	LONGEAR SUNFISH	1	M	С	S	18	36.0	10.34	1340	5.31	37.2
80-015	GREENSIDE DARTER	1	M	S	D	6	12.0	3.45	40	0.16	3.3
80-022	RAINBOW DARTER	I	М	S	D	2	4.0	1.15	8	0.03	2.0

No Species: 17 Nat. Species: 16 Hybrids: 0 Total Counted: 174 Total Rel. Wt.: 25232

IBI: 36.0 **Mlwb:** 8.2

B3 - 35 03/31/2022

Site ID: MC77 River: 23-001 Mill Creek RM: 7.47 Date: 08/13/2021

Time Fished: 1783 Distance: 0.200 Drainge (sq mi): 126.0 Depth: 0

Location: RR trestle Winton Place/dst. Center Hill Ave. Lat: 39.18260 Long: -84.49930

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
20-003	GIZZARD SHAD	0		М		30	45.0	3.98	2220	46.24	49.3
40-015	NORTHERN HOG SUCKER	I	M	S	R	7	10.5	0.93	120	2.50	11.4
40-016	WHITE SUCKER	0	Т	S	W	1	1.5	0.13	30	0.62	20.0
43-015	SUCKERMOUTH MINNOW	I		S	N	1	1.5	0.13	30	0.62	20.0
43-020	EMERALD SHINER	I		М	N	560	840.0	74.27	675	14.06	0.8
43-032	SPOTFIN SHINER	1		М	N	33	49.5	4.38	120	2.50	2.4
43-034	SAND SHINER	I	M	М	N	11	16.5	1.46	60	1.25	3.6
43-043	BLUNTNOSE MINNOW	0	Т	С	N	1	1.5	0.13	15	0.31	10.0
43-044	CENTRAL STONEROLLER	Н		Ν	N	22	33.0	2.92	495	10.31	15.0
47-002	CHANNEL CATFISH			С	F	2	3.0	0.27	9	0.19	3.0
77-006	LARGEMOUTH BASS	С		С	F	1	1.5	0.13	15	0.31	10.0
77-008	GREEN SUNFISH	I	Т	С	S	30	45.0	3.98	615	12.81	13.6
77-013	PUMPKINSEED SUNFISH	1	Р	С	S	3	4.5	0.40	60	1.25	13.3
77-015	GREEN SF X BLUEGILL SF					1	1.5	0.13	37	0.78	25.0
80-014	JOHNNY DARTER	1		С	D	2	3.0	0.27	15	0.31	5.0
80-015	GREENSIDE DARTER	1	M	S	D	5	7.5	0.66	75	1.56	10.0
80-022	RAINBOW DARTER	I	M	S	D	35	52.5	4.64	135	2.81	2.5
80-023	ORANGETHROAT DARTER	I		S	D	9	13.5	1.19	75	1.56	5.5

No Species: 17 Nat. Species: 17 Hybrids: 1 Total Counted: 754 Total Rel. Wt.: 4801

IBI: 38.0 **Mlwb:** 7.1

B3 - 36 03/31/2022

Site ID: MC77 River: 23-001 Mill Creek RM: 7.47 Date: 09/16/2021

Time Fished: 1444 Distance: 0.200 Drainge (sq mi): 126.0 Depth: 0

Location: RR trestle Winton Place/dst. Center Hill Ave. Lat: 39.18260 Long: -84.49930

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group		lo. sh	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
20-003	GIZZARD SHAD	0		М			2	3.0	0.61	165	3.05	55.0
40-015	NORTHERN HOG SUCKER	I	M	S	R		12	18.0	3.65	3150	58.25	175.0
40-016	WHITE SUCKER	0	Т	S	W		1	1.5	0.30	30	0.55	20.0
40-023	SMALLMOUTH REDHORSE	I	M	S	R		1	1.5	0.30	180	3.33	120.0
43-013	CREEK CHUB	G	Т	Ν	Ν		2	3.0	0.61	30	0.55	10.0
43-015	SUCKERMOUTH MINNOW	I		S	Ν		3	4.5	0.91	45	0.83	10.0
43-020	EMERALD SHINER	1		М	Ν	1	180	270.0	54.71	270	4.99	1.0
43-032	SPOTFIN SHINER	I		М	Ν		2	3.0	0.61	6	0.11	2.0
43-034	SAND SHINER	I	М	М	Ν		1	1.5	0.30	3	0.06	2.0
43-043	BLUNTNOSE MINNOW	0	Т	С	Ν		1	1.5	0.30	4	0.08	3.0
77-004	SMALLMOUTH BASS	С	М	С	F		4	6.0	1.22	450	8.32	75.0
77-008	GREEN SUNFISH	1	Т	С	S		59	88.5	17.93	870	16.09	9.8
77-009	BLUEGILL SUNFISH	1	Р	С	S		1	1.5	0.30	7	0.14	5.0
77-015	GREEN SF X BLUEGILL SF						1	1.5	0.30	15	0.28	10.0
80-015	GREENSIDE DARTER	I	M	S	D		8	12.0	2.43	37	0.69	3.1
80-022	RAINBOW DARTER	1	М	S	D		48	72.0	14.59	135	2.50	1.8
80-024	FANTAIL DARTER	I		С	D		3	4.5	0.91	9	0.17	2.0

No Species: 16 Nat. Species: 16 Hybrids: 1 Total Counted: 329 Total Rel. Wt.: 5407

IBI: 42.0 **Mlwb:** 6.6

B3 - 37 03/31/2022

Site ID: MC09 River: 23-001 Mill Creek RM: 6.80 Date: 08/12/2021

Time Fished: 1093 Distance: 0.200 Drainge (sq mi): 128.0 Depth: 0

Location: dst. CSX RR bridge Lat: 39.17480 Long: -84.50500

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No Fish		Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
40-015	NORTHERN HOG SUCKER	I	М	S	R		2	3.0	1.03	534	8.68	178.0
40-016	WHITE SUCKER	0	Т	S	W		1	1.5	0.51	7	0.12	5.0
43-001	COMMON CARP	0	Т	М	G		2	3.0	1.03	5250	85.30	1750.0
43-015	SUCKERMOUTH MINNOW	1		S	N		2	3.0	1.03	15	0.24	5.0
43-020	EMERALD SHINER	1		М	N	18	0	270.0	92.31	180	2.92	0.6
43-034	SAND SHINER	1	M	М	N		1	1.5	0.51	3	0.05	2.0
43-044	CENTRAL STONEROLLER	Н		Ν	N		5	7.5	2.56	75	1.22	10.0
47-002	CHANNEL CATFISH			С	F		2	3.0	1.03	90	1.46	30.0

No Species: 8 Nat. Species: 7 Hybrids: 0 Total Counted: 195 Total Rel. Wt.: 6154

IBI: 30.0 **Mlwb:** 3.8

B3 - 38 03/31/2022

Site ID: MC07 River: 23-001 Mill Creek RM: 6.45 Date: 08/12/2021

Time Fished: 839 Distance: 0.200 Drainge (sq mi): 135.0 Depth: 0

Location: dst. Spring Grove Ave. Lat: 39.17010 Long: -84.50600

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
43-020	EMERALD SHINER	1		М	N	90	135.0	83.33	180	73.17	1.3
43-032	SPOTFIN SHINER	1		М	Ν	1	1.5	0.93	6	2.44	4.0
43-034	SAND SHINER	1	M	М	N	17	25.5	15.74	60	24.39	2.3

No Species: 3 Nat. Species: 3 Hybrids: 0 Total Counted: 108 Total Rel. Wt.: 246

IBI: 28.0 **Mlwb:** 3.7

B3 - 39 03/31/2022

Site ID: MC75 River: 23-001 Mill Creek RM: 4.84 Date: 08/13/2021

Time Fished: 2060 Distance: 0.200 Drainge (sq mi): 139.0 Depth: 0

Location: adj. Salway Park Lat: 39.16120 Long: -84.52630

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
20-003	GIZZARD SHAD	0		М		2	3.0	2.67	390	1.72	130.0
40-005	QUILLBACK CARPSUCKER	0		М	С	2	3.0	2.67	2700	11.87	900.0
43-001	COMMON CARP	0	Т	М	G	11	16.5	14.67	16500	72.56	1000.0
47-002	CHANNEL CATFISH			С	F	1	1.5	1.33	60	0.26	40.0
47-004	YELLOW BULLHEAD	1	Т	С		1	1.5	1.33	345	1.52	230.0
47-007	FLATHEAD CATFISH	Р		С	F	1	1.5	1.33	270	1.19	180.0
77-001	WHITE CRAPPIE	1		С	S	2	3.0	2.67	270	1.19	90.0
77-008	GREEN SUNFISH	1	Т	С	S	18	27.0	24.00	525	2.31	19.4
77-009	BLUEGILL SUNFISH	1	Р	С	S	22	33.0	29.33	1125	4.95	34.0
77-011	LONGEAR SUNFISH	1	М	С	S	12	18.0	16.00	450	1.98	25.0
77-015	GREEN SF X BLUEGILL SF					2	3.0	2.67	60	0.26	20.0
80-011	LOGPERCH	I	М	S	D	1	1.5	1.33	45	0.20	30.0

No Species: 11 Nat. Species: 10 Hybrids: 1 Total Counted: 75 Total Rel. Wt.: 22740

IBI: 28.0 **Mlwb:** 5.8

B3 - 40 03/31/2022

Site ID: MC75 River: 23-001 Mill Creek RM: 4.84 Date: 09/17/2021

Time Fished: 1892 Distance: 0.200 Drainge (sq mi): 139.0 Depth: 0

Location: adj. Salway Park Lat: 39.16120 Long: -84.52630

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
20-003	GIZZARD SHAD	0		М		30	45.0	19.87	3525	12.53	78.3
40-005	QUILLBACK CARPSUCKER	0		М	С	3	4.5	1.99	5265	18.72	1170.0
40-006	RIVER CARPSUCKER	0		М	С	2	3.0	1.32	3315	11.79	1105.0
43-001	COMMON CARP	0	Т	М	G	7	10.5	4.64	11325	40.27	1078.5
47-004	YELLOW BULLHEAD	1	Т	С		3	4.5	1.99	270	0.96	60.0
47-007	FLATHEAD CATFISH	Р		С	F	1	1.5	0.66	315	1.12	210.0
77-002	BLACK CRAPPIE	1		С	S	4	6.0	2.65	450	1.60	75.0
77-006	LARGEMOUTH BASS	С		С	F	11	16.5	7.28	1125	4.00	68.1
77-008	GREEN SUNFISH	1	Т	С	S	15	22.5	9.93	300	1.07	13.3
77-009	BLUEGILL SUNFISH	1	Р	С	S	41	61.5	27.15	1350	4.80	21.9
77-011	LONGEAR SUNFISH	1	М	С	S	30	45.0	19.87	780	2.77	17.3
77-015	GREEN SF X BLUEGILL SF					4	6.0	2.65	105	0.37	17.5

No Species: 11 Nat. Species: 10 Hybrids: 1 Total Counted: 151 Total Rel. Wt.: 28125

IBI: 34.0 **Mlwb:** 7.3

B3 - 41 03/31/2022

Site ID: MC74 River: 23-001 Mill Creek RM: 4.21 Date: 08/13/2021

Time Fished: 2045 Distance: 0.200 Drainge (sq mi): 141.0 Depth: 0

Location: ust. S. Ludlow Ave. Lat: 39.15800 Long: -84.53720

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
20-003	GIZZARD SHAD	0		М		15	22.5	4.87	1200	5.61	53.3
40-015	NORTHERN HOG SUCKER	I	M	S	R	6	9.0	1.95	300	1.40	33.3
43-001	COMMON CARP	0	Т	М	G	17	25.5	5.52	16875	78.87	661.7
43-020	EMERALD SHINER	1		М	N	200	300.0	64.94	105	0.49	0.3
43-032	SPOTFIN SHINER	1		М	N	5	7.5	1.62	15	0.07	2.0
43-034	SAND SHINER	1	M	М	N	4	6.0	1.30	6	0.03	1.0
47-002	CHANNEL CATFISH			С	F	2	3.0	0.65	150	0.70	50.0
77-001	WHITE CRAPPIE	1		С	S	1	1.5	0.32	180	0.84	120.0
77-006	LARGEMOUTH BASS	С		С	F	5	7.5	1.62	780	3.65	104.0
77-008	GREEN SUNFISH	1	Т	С	S	28	42.0	9.09	900	4.21	21.4
77-011	LONGEAR SUNFISH	1	M	С	S	18	27.0	5.84	780	3.65	28.8
80-011	LOGPERCH	1	M	S	D	1	1.5	0.32	30	0.14	20.0
80-015	GREENSIDE DARTER	I	М	S	D	6	9.0	1.95	75	0.35	8.3

No Species: 13 Nat. Species: 12 Hybrids: 0 Total Counted: 308 Total Rel. Wt.: 21396

IBI: 36.0 **Mlwb:** 5.4

B3 - 42 03/31/2022

Site ID: MC74 River: 23-001 Mill Creek RM: 4.21 Date: 09/17/2021

Time Fished: 1726 Distance: 0.200 Drainge (sq mi): 141.0 Depth: 0

Location: ust. S. Ludlow Ave. Lat: 39.15800 Long: -84.53720

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
40-004	SMALLMOUTH BUFFALO	- 1		М	С	2	3.0	0.40	6000	21.63	2000.0
40-015	NORTHERN HOG SUCKER	- 1	M	S	R	18	27.0	3.64	6000	21.63	222.2
40-023	SMALLMOUTH REDHORSE	- 1	M	S	R	1	1.5	0.20	900	3.24	600.0
43-001	COMMON CARP	0	Т	М	G	24	36.0	4.85	3150	11.35	87.5
43-020	EMERALD SHINER	1		М	Ν	250	375.0	50.51	225	0.81	0.6
43-025	STRIPED SHINER	1		S	Ν	3	4.5	0.61	22	0.08	5.0
43-032	SPOTFIN SHINER	1		М	Ν	8	12.0	1.62	37	0.14	3.1
43-034	SAND SHINER	1	M	М	N	40	60.0	8.08	45	0.16	0.7
43-043	BLUNTNOSE MINNOW	0	Т	С	N	35	52.5	7.07	105	0.38	2.0
47-002	CHANNEL CATFISH			С	F	2	3.0	0.40	4875	17.57	1625.0
47-004	YELLOW BULLHEAD	1	Т	С		3	4.5	0.61	240	0.87	53.3
74-005	Striped X White Bass				Е	7	10.5	1.41	1875	6.76	178.5
77-006	LARGEMOUTH BASS	С		С	F	13	19.5	2.63	1800	6.49	92.3
77-008	GREEN SUNFISH	1	Т	С	S	34	51.0	6.87	1140	4.11	22.3
77-009	BLUEGILL SUNFISH	1	Р	С	S	20	30.0	4.04	465	1.68	15.5
77-011	LONGEAR SUNFISH	1	M	С	S	21	31.5	4.24	720	2.60	22.8
80-011	LOGPERCH	1	M	S	D	2	3.0	0.40	22	0.08	7.5
80-015	GREENSIDE DARTER	I	M	S	D	8	12.0	1.62	105	0.38	8.7
80-022	RAINBOW DARTER	I	М	S	D	4	6.0	0.81	15	0.05	2.5

No Species: 18 Nat. Species: 17 Hybrids: 1 Total Counted: 495 Total Rel. Wt.: 27742

IBI: 40.0 **Mlwb:** 8.5

B3 - 43 03/31/2022

Site ID: MC73 River: 23-001 Mill Creek RM: 3.45 Date: 08/12/2021

Time Fished: 1310 Distance: 0.200 Drainge (sq mi): 144.0 Depth: 0

Location: ust. Mill Creek Rd. Lat: 39.14970 Long: -84.54550

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	N Fis	o. sh	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
20-003	GIZZARD SHAD	0		М			1	1.5	0.67	120	0.29	80.0
40-002	BIGMOUTH BUFFALO	1		М	С		1	1.5	0.67	3600	8.67	2400.0
40-004	SMALLMOUTH BUFFALO	1		М	С		2	3.0	1.34	5100	12.29	1700.0
40-015	NORTHERN HOG SUCKER	1	M	S	R		6	9.0	4.03	2100	5.06	233.3
43-001	COMMON CARP	0	Т	М	G		14	21.0	9.40	28800	69.40	1371.4
43-020	EMERALD SHINER	1		М	Ν		66	99.0	44.30	75	0.18	0.7
43-027	RIVER SHINER	1		S	Ν		1	1.5	0.67	1	0.00	1.0
43-034	SAND SHINER	1	M	М	Ν		1	1.5	0.67	1	0.00	1.0
47-004	YELLOW BULLHEAD	1	Т	С			1	1.5	0.67	270	0.65	180.0
77-005	SPOTTED BASS	С		С	F		1	1.5	0.67	315	0.76	210.0
77-008	GREEN SUNFISH	1	Т	С	S		29	43.5	19.46	435	1.05	10.0
77-009	BLUEGILL SUNFISH	1	Р	С	S		20	30.0	13.42	435	1.05	14.5
77-011	LONGEAR SUNFISH	1	M	С	S		5	7.5	3.36	195	0.47	26.0
85-001	FRESHWATER DRUM		Р	М			1	1.5	0.67	52	0.13	35.0

No Species: 14 Nat. Species: 13 Hybrids: 0 Total Counted: 149 Total Rel. Wt.: 41500

IBI: 32.0 **Mlwb:** 6.2

B3 - 44 03/31/2022

Site ID: MC73 River: 23-001 Mill Creek RM: 3.45 Date: 09/16/2021

Time Fished: 1306 Distance: 0.200 Drainge (sq mi): 144.0 Depth: 0

Location: ust. Mill Creek Rd. Lat: 39.14970 Long: -84.54550

Species Code:	On a size Names	Feed	Toler-	Breed	IBI	No.	Rel.	% by	Rel.	% by	Av.
	Species Name:	Guild	ance	Guild	Group	Fish	No.	No.	Wt.	Wt.	Wt.
20-003	GIZZARD SHAD	0		М		73	109.5	17.14	1275	3.32	11.6
40-015	NORTHERN HOG SUCKER	- 1	M	S	R	7	10.5	1.64	2400	6.25	228.5
43-001	COMMON CARP	0	Т	М	G	9	13.5	2.11	26100	67.97	1933.3
43-020	EMERALD SHINER	1		М	N	277	415.5	65.02	195	0.51	0.4
43-032	SPOTFIN SHINER	1		М	N	1	1.5	0.23	7	0.02	5.0
43-034	SAND SHINER	1	M	М	N	6	9.0	1.41	7	0.02	0.8
47-002	CHANNEL CATFISH			С	F	1	1.5	0.23	15	0.04	10.0
47-004	YELLOW BULLHEAD	1	Т	С		1	1.5	0.23	90	0.23	60.0
47-007	FLATHEAD CATFISH	Р		С	F	1	1.5	0.23	30	0.08	20.0
74-005	Striped X White Bass				Е	1	1.5	0.23	150	0.39	100.0
77-004	SMALLMOUTH BASS	С	М	С	F	1	1.5	0.23	30	0.08	20.0
77-005	SPOTTED BASS	С		С	F	6	9.0	1.41	1305	3.40	145.0
77-006	LARGEMOUTH BASS	С		С	F	3	4.5	0.70	90	0.23	20.0
77-008	GREEN SUNFISH	1	Т	С	S	23	34.5	5.40	255	0.66	7.3
77-009	BLUEGILL SUNFISH	1	Р	С	S	5	7.5	1.17	45	0.12	6.0
77-011	LONGEAR SUNFISH	1	M	С	S	6	9.0	1.41	165	0.43	18.3
77-013	PUMPKINSEED SUNFISH	1	Р	С	S	1	1.5	0.23	15	0.04	10.0
85-001	FRESHWATER DRUM		Р	М		4	6.0	0.94	6225	16.21	1037.5

No Species: 17 Nat. Species: 16 Hybrids: 1 Total Counted: 426 Total Rel. Wt.: 38400

IBI: 36.0 **Mlwb:** 6.5

B3 - 45 03/31/2022

Site ID: MC72 River: 23-001 Mill Creek RM: 3.15 Date: 08/12/2021

Time Fished: 1015 Distance: 0.200 Drainge (sq mi): 154.0 Depth: 0

Location: dst. Mill Creek Rd. Lat: 39.14490 Long: -84.54780

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
20-003	GIZZARD SHAD	0		М		21	31.5	18.26	2475	41.94	78.5
40-015	NORTHERN HOG SUCKER	1	М	S	R	1	1.5	0.87	510	8.64	340.0
43-020	EMERALD SHINER	1		М	N	30	45.0	26.09	150	2.54	3.3
43-034	SAND SHINER	- 1	М	М	N	1	1.5	0.87	3	0.05	2.0
47-002	CHANNEL CATFISH			С	F	1	1.5	0.87	3	0.05	2.0
47-007	FLATHEAD CATFISH	Р		С	F	1	1.5	0.87	142	2.41	95.0
77-004	SMALLMOUTH BASS	С	М	С	F	1	1.5	0.87	105	1.78	70.0
77-005	SPOTTED BASS	С		С	F	4	6.0	3.48	555	9.41	92.5
77-006	LARGEMOUTH BASS	С		С	F	3	4.5	2.61	270	4.58	60.0
77-008	GREEN SUNFISH	- 1	Т	С	S	20	30.0	17.39	285	4.83	9.5
77-009	BLUEGILL SUNFISH	1	Р	С	S	20	30.0	17.39	1050	17.79	35.0
77-011	LONGEAR SUNFISH	1	М	С	S	12	18.0	10.43	352	5.97	19.5

No Species: 12 Nat. Species: 12 Hybrids: 0 Total Counted: 115 Total Rel. Wt.: 5901

IBI: 34.0 **Mlwb:** 7.1

B3 - 46 03/31/2022

Site ID: MC72 River: 23-001 Mill Creek RM: 3.15 Date: 09/16/2021

Time Fished: 1514 Distance: 0.200 Drainge (sq mi): 154.0 Depth: 0

Location: dst. Mill Creek Rd. Lat: 39.14490 Long: -84.54780

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
20-003	GIZZARD SHAD	0		М	-	72	108.0	17.52	1845	36.62	17.0
40-023	SMALLMOUTH REDHORSE	I	М	S	R	2	3.0	0.49	30	0.60	10.0
43-015	SUCKERMOUTH MINNOW	1		S	N	1	1.5	0.24	7	0.15	5.0
43-020	EMERALD SHINER	I		М	N	226	339.0	54.99	345	6.85	1.0
43-032	SPOTFIN SHINER	I		М	N	4	6.0	0.97	15	0.30	2.5
43-034	SAND SHINER	I	М	М	N	14	21.0	3.41	30	0.60	1.4
43-044	CENTRAL STONEROLLER	Н		Ν	N	10	15.0	2.43	90	1.79	6.0
43-063	CHANNEL SHINER	1	1	М	N	21	31.5	5.11	60	1.19	1.9
47-002	CHANNEL CATFISH			С	F	2	3.0	0.49	390	7.74	130.0
47-007	FLATHEAD CATFISH	Р		С	F	1	1.5	0.24	225	4.47	150.0
77-004	SMALLMOUTH BASS	С	М	С	F	1	1.5	0.24	90	1.79	60.0
77-006	LARGEMOUTH BASS	С		С	F	5	7.5	1.22	1110	22.03	148.0
77-008	GREEN SUNFISH	1	Т	С	S	32	48.0	7.79	465	9.23	9.6
77-009	BLUEGILL SUNFISH	1	Р	С	S	14	21.0	3.41	150	2.98	7.1
77-011	LONGEAR SUNFISH	I	М	С	S	4	6.0	0.97	165	3.27	27.5
77-013	PUMPKINSEED SUNFISH	I	Р	С	S	1	1.5	0.24	15	0.30	10.0
80-014	JOHNNY DARTER	I		С	D	1	1.5	0.24	6	0.12	4.0

No Species: 17 Nat. Species: 17 Hybrids: 0 Total Counted: 411 Total Rel. Wt.: 5038

B3 - 47

IBI: 38.0 **Mlwb:** 7.5

03/31/2022

Site ID: MC05 River: 23-001 Mill Creek RM: 2.50 Date: 08/11/2021

Time Fished: 1817 Distance: 0.200 Drainge (sq mi): 156.0 Depth: 0

Location: dst. Hopple St. Lat: 39.13560 Long: -84.54590

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
10-004	LONGNOSE GAR	Р		М		1	1.5	0.31	1950	3.96	1300.0
20-003	GIZZARD SHAD	0		М		14	21.0	4.38	1140	2.31	54.2
40-004	SMALLMOUTH BUFFALO	I		М	С	12	18.0	3.75	38250	77.62	2125.0
40-015	NORTHERN HOG SUCKER	I	M	S	R	1	1.5	0.31	22	0.05	15.0
43-020	EMERALD SHINER	1		М	N	209	313.5	65.31	210	0.43	0.6
43-044	CENTRAL STONEROLLER	Н		Ν	Ν	1	1.5	0.31	15	0.03	10.0
47-002	CHANNEL CATFISH			С	F	61	91.5	19.06	7200	14.61	78.6
74-005	Striped X White Bass				Е	1	1.5	0.31	210	0.43	140.0
77-009	BLUEGILL SUNFISH	I	Р	С	S	1	1.5	0.31	60	0.12	40.0
80-015	GREENSIDE DARTER	1	M	S	D	1	1.5	0.31	1	0.00	1.0
85-001	FRESHWATER DRUM		Р	М		18	27.0	5.63	217	0.44	8.0

No Species: 10 Nat. Species: 10 Hybrids: 1 Total Counted: 320 Total Rel. Wt.: 49276

IBI: 30.0 **Mlwb:** 6.9

B3 - 48 03/31/2022

Site ID: MC05 River: 23-001 Mill Creek RM: 2.50 Date: 09/16/2021

Time Fished: 1640 Distance: 0.200 Drainge (sq mi): 156.0 Depth: 0

Location: dst. Hopple St. Lat: 39.13560 Long: -84.54590

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No Fis		Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
20-003	GIZZARD SHAD	0		М		2	11	61.5	7.66	3750	18.29	60.9
40-004	SMALLMOUTH BUFFALO	I		М	С		1	1.5	0.19	3900	19.03	2600.0
40-015	NORTHERN HOG SUCKER	I	M	S	R		2	3.0	0.37	750	3.66	250.0
40-023	SMALLMOUTH REDHORSE	I	M	S	R		5	7.5	0.93	120	0.59	16.0
43-020	EMERALD SHINER	I		М	N	43	32	648.0	80.75	412	2.01	0.6
43-063	CHANNEL SHINER	I	1	М	Ν		9	13.5	1.68	22	0.11	1.6
47-002	CHANNEL CATFISH			С	F	2	20	30.0	3.74	2115	10.32	70.5
47-008	STONECAT MADTOM	I	1	С			3	4.5	0.56	45	0.22	10.0
74-005	Striped X White Bass				E	1	11	16.5	2.06	9195	44.86	557.2
77-004	SMALLMOUTH BASS	С	M	С	F		2	3.0	0.37	60	0.29	20.0
77-008	GREEN SUNFISH	I	Т	С	S		3	4.5	0.56	7	0.04	1.6
77-011	LONGEAR SUNFISH	I	М	С	S		2	3.0	0.37	45	0.22	15.0
85-001	FRESHWATER DRUM		Р	М			4	6.0	0.75	75	0.37	12.5

No Species: 12 Nat. Species: 12 Hybrids: 1 Total Counted: 535 Total Rel. Wt.: 20497

IBI: 38.0 **Mlwb:** 6.5

B3 - 49 03/31/2022

Site ID: MC03 River: 23-001 Mill Creek RM: 1.69 Date: 08/14/2021

Time Fished: 1855 Distance: 0.500 Drainge (sq mi): 163.0 Depth: 0

Location: dst. Lick Run CSO Lat: 39.12190 Long: -84.54260

Species Code:	Species Name:	Feed	Toler-	Breed	IBI	No.	Rel.	% by	Rel.	% by	Av.
10.004	'	Guild	ance	Guild	Group	Fish	No.	No.	Wt.	Wt.	<u>Wt</u> .
10-004	LONGNOSE GAR	Р		М		1		0.72	2200	1.82	1100.0
20-003	GIZZARD SHAD	0		M		51	102.0	36.69	9260	7.67	90.7
40-004	SMALLMOUTH BUFFALO	I		М	С	6	12.0	4.32	26000	21.54	2166.6
40-005	QUILLBACK CARPSUCKER	0		М	С	2	4.0	1.44	840	0.70	210.0
40-006	RIVER CARPSUCKER	0		М	С	12	24.0	8.63	26000	21.54	1083.3
43-001	COMMON CARP	0	Т	М	G	8	16.0	5.76	15600	12.92	975.0
43-020	EMERALD SHINER	I		М	Ν	5	10.0	3.60	20	0.02	2.0
47-002	CHANNEL CATFISH			С	F	g	18.0	6.47	24200	20.05	1344.4
47-007	FLATHEAD CATFISH	Р		С	F	1	2.0	0.72	560	0.46	280.0
74-001	WHITE BASS	Р		М	F	6	12.0	4.32	1420	1.18	118.3
74-002	STRIPED BASS	Р		М	Е	1	2.0	0.72	6200	5.14	3100.0
77-005	SPOTTED BASS	С		С	F	6	12.0	4.32	300	0.25	25.0
77-006	LARGEMOUTH BASS	С		С	F	5	10.0	3.60	5340	4.42	534.0
77-008	GREEN SUNFISH	- 1	Т	С	S	2	4.0	1.44	120	0.10	30.0
77-009	BLUEGILL SUNFISH	- 1	Р	С	S	6	12.0	4.32	480	0.40	40.0
77-010	ORANGESPOTTED SUNFISH	- 1		С	S	2	4.0	1.44	40	0.03	10.0
77-011	LONGEAR SUNFISH	- 1	М	С	S	g	18.0	6.47	460	0.38	25.5
77-015	GREEN SF X BLUEGILL SF					1	2.0	0.72	20	0.02	10.0
85-001	FRESHWATER DRUM		Р	М		6	12.0	4.32	1640	1.36	136.6

No Species: 18 Nat. Species: 16 Hybrids: 1 Total Counted: 139 Total Rel. Wt.: 120700

IBI: 34.0 **Mlwb:** 9.3

B3 - 50 03/31/2022

Site ID: MC71 River: 23-001 Mill Creek RM: 0.83 Date: 08/14/2021

Time Fished: 2141 Distance: 0.500 Drainge (sq mi): 164.0 Depth: 0

Location: ust. Gest St. Lat: 39.10970 Long: -84.54460

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No Fis		Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
10-004	LONGNOSE GAR	Р		М	-		1	2.0	1.72	60	0.12	30.0
20-003	GIZZARD SHAD	0		М			8	16.0	13.79	1200	2.31	75.0
40-003	BLACK BUFFALO	1		М	С		1	2.0	1.72	4600	8.86	2300.0
40-004	SMALLMOUTH BUFFALO	I		М	С		3	6.0	5.17	8600	16.57	1433.3
40-006	RIVER CARPSUCKER	0		М	С	•	14	28.0	24.14	28400	54.72	1014.2
43-020	EMERALD SHINER	I		М	Ν		6	12.0	10.34	60	0.12	5.0
47-002	CHANNEL CATFISH			С	F		2	4.0	3.45	5800	11.18	1450.0
47-007	FLATHEAD CATFISH	Р		С	F		1	2.0	1.72	700	1.35	350.0
74-002	STRIPED BASS	Р		М	E		1	2.0	1.72	600	1.16	300.0
77-001	WHITE CRAPPIE	I		С	S		2	4.0	3.45	640	1.23	160.0
77-002	BLACK CRAPPIE	I		С	S		1	2.0	1.72	280	0.54	140.0
77-005	SPOTTED BASS	С		С	F		1	2.0	1.72	400	0.77	200.0
77-006	LARGEMOUTH BASS	С		С	F		2	4.0	3.45	60	0.12	15.0
77-008	GREEN SUNFISH	I	Т	С	S		6	12.0	10.34	100	0.19	8.3
77-009	BLUEGILL SUNFISH	1	Р	С	S		4	8.0	6.90	160	0.31	20.0
77-010	ORANGESPOTTED SUNFISH	I		С	S		3	6.0	5.17	80	0.15	13.3
77-011	LONGEAR SUNFISH	I	М	С	S		1	2.0	1.72	40	0.08	20.0
77-015	GREEN SF X BLUEGILL SF						1	2.0	1.72	120	0.23	60.0

No Species: 17 Nat. Species: 16 Hybrids: 1 Total Counted: 58 Total Rel. Wt.: 51900

IBI: 34.0 **Mlwb:** 8.2

B3 - 51 03/31/2022

Site ID: MC70 River: 23-001 Mill Creek RM: 0.50 Date: 08/14/2021

Time Fished: 1541 Distance: 0.420 Drainge (sq mi): 164.0 Depth: 0

Location: dst. Gest St. Lat: 39.10500 Long: -84.54480

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
20-003	GIZZARD SHAD	0		М		9	21.4	22.50	1261	1.20	58.8
40-003	BLACK BUFFALO	1		М	С	2	4.8	5.00	14286	13.60	3000.0
40-004	SMALLMOUTH BUFFALO	1		М	С	14	33.3	35.00	64548	61.43	1936.4
40-006	RIVER CARPSUCKER	0		М	С	7	16.7	17.50	14762	14.05	885.7
47-002	CHANNEL CATFISH			С	F	1	2.4	2.50	2142	2.04	900.0
47-007	FLATHEAD CATFISH	Р		С	F	1	2.4	2.50	3809	3.63	1600.0
74-001	WHITE BASS	Р		М	F	1	2.4	2.50	1428	1.36	600.0
77-006	LARGEMOUTH BASS	С		С	F	1	2.4	2.50	952	0.91	400.0
77-008	GREEN SUNFISH	1	Т	С	S	2	4.8	5.00	142	0.14	30.0
77-011	LONGEAR SUNFISH	1	M	С	S	1	2.4	2.50	71	0.07	30.0
80-001	SAUGER	Р		S	F	1	2.4	2.50	1666	1.59	700.0

No Species: 11 Nat. Species: 11 Hybrids: 0 Total Counted: 40 Total Rel. Wt.: 105073

IBI: 30.0 **Mlwb:** 7.7

B3 - 52 03/31/2022

Site ID: MC69 River: 23-001 Mill Creek RM: 0.21 Date: 08/14/2021

Time Fished: 1140 Distance: 0.350 Drainge (sq mi): 164.0 Depth: 0

Location: RR trestle-Queensgate Lat: 39.10180 Long: -84.54430

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
20-003	GIZZARD SHAD	0		М		8	22.9	25.81	1142	6.72	50.0
40-004	SMALLMOUTH BUFFALO	1		М	С	2	5.7	6.45	7142	42.02	1250.0
40-023	SMALLMOUTH REDHORSE	I	M	S	R	1	2.9	3.23	57	0.34	20.0
43-001	COMMON CARP	0	Т	М	G	1	2.9	3.23	7713	45.38	2700.0
77-005	SPOTTED BASS	С		С	F	2	5.7	6.45	114	0.67	20.0
77-006	LARGEMOUTH BASS	С		С	F	7	20.0	22.58	228	1.34	11.4
77-008	GREEN SUNFISH	1	Т	С	S	3	8.6	9.68	171	1.01	20.0
77-009	BLUEGILL SUNFISH	I	Р	С	S	2	5.7	6.45	57	0.34	10.0
77-011	LONGEAR SUNFISH	1	M	С	S	4	11.4	12.90	285	1.68	25.0
77-012	REDEAR SUNFISH	I		С	E	1	2.9	3.23	85	0.50	30.0

No Species: 10 Nat. Species: 8 Hybrids: 0 Total Counted: 31 Total Rel. Wt.: 16999

IBI: 28.0 **Mlwb:** 6.5

B3 - 53 03/31/2022

Site ID: West Fork Mill Creek (Mill Cr. RM MC45 River: 23-004 RM: 0.20 Date: 08/12/2021

11.57)

Drainge (sq mi): Depth: Time Fished: Distance:

36.5 Lat: 1614 0.150 Location: Long:

39.21360 -84.45990 Elliot Ave.

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
40-015	NORTHERN HOG SUCKER	1	М	S	R	9	18.0	2.52	1500	16.09	83.3
40-013	WHITE SUCKER	0	T	S	W	57	114.0	15.97	2500	26.82	21.9
43-011	WESTERN BLACKNOSE DACE	_	T	S	N	2	4.0	0.56	40	0.43	10.0
43-013	CREEK CHUB	G	T	N	N	31	62.0	8.68	780	8.37	12.5
43-025	STRIPED SHINER	Ī		S	N	8	16.0	2.24	300	3.22	18.7
43-032	SPOTFIN SHINER	1		М	N	2	4.0	0.56	80	0.86	20.0
43-043	BLUNTNOSE MINNOW	0	Т	С	N	164	328.0	45.94	860	9.23	2.6
43-044	CENTRAL STONEROLLER	Н		N	N	9	18.0	2.52	120	1.29	6.6
47-004	YELLOW BULLHEAD	1	Т	С		3	6.0	0.84	380	4.08	63.3
77-008	GREEN SUNFISH	1	Т	С	S	2	4.0	0.56	100	1.07	25.0
77-011	LONGEAR SUNFISH	1	M	С	S	50	100.0	14.01	2400	25.75	24.0
77-021	GREEN SF X LONGEAR SF					1	2.0	0.28	80	0.86	40.0
80-014	JOHNNY DARTER	1		С	D	8	16.0	2.24	60	0.64	3.7
80-015	GREENSIDE DARTER	1	M	S	D	1	2.0	0.28	20	0.21	10.0
80-024	FANTAIL DARTER	I		С	D	10	20.0	2.80	100	1.07	5.0

14 **Hybrids:** 1 No Species: 14 **Total Counted:** Total Rel. Wt.: Nat. Species: 357 9320

IBI: 26.0 Mlwb: 7.1

> 03/31/2022 B3 - 54

0

Site ID: MC18 River: 23-006 East Fork Mill Creek RM: 1.14 Date: 07/08/2021

Time Fished: 1604 Distance: 0.150 Drainge (sq mi): 9.2 Depth: 0

Location: ust. Butler Co. Upper Mill Creek WWTP Lat: 39.30470 Long: -84.43080

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	N Fis		Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
40-016	WHITE SUCKER	0	Т	S	W		9	18.0	4.05	0	0.00	0.0
43-044	CENTRAL STONEROLLER	Н		Ν	Ν		18	36.0	8.11	0	0.00	0.0
47-004	YELLOW BULLHEAD	I	Т	С			2	4.0	0.90	0	0.00	0.0
77-006	LARGEMOUTH BASS	С		С	F		9	18.0	4.05	0	0.00	0.0
77-008	GREEN SUNFISH	1	Т	С	S		85	170.0	38.29	0	0.00	0.0
77-009	BLUEGILL SUNFISH	1	Р	С	S		67	134.0	30.18	0	0.00	0.0
80-014	JOHNNY DARTER	1		С	D		6	12.0	2.70	0	0.00	0.0
80-022	RAINBOW DARTER	I	M	S	D		4	8.0	1.80	0	0.00	0.0
80-023	ORANGETHROAT DARTER	1		S	D		22	44.0	9.91	0	0.00	0.0

No Species: 9 Nat. Species: 9 Hybrids: 0 Total Counted: 222 Total Rel. Wt.: 0

IBI: 36.0 **MIwb:** N/A

B3 - 55 03/31/2022

Site ID: MC18 River: 23-006 East Fork Mill Creek RM: 1.14 Date: 09/13/2021

Time Fished: 826 Distance: 0.150 Drainge (sq mi): 9.2 Depth: 0

Location: ust. Butler Co. Upper Mill Creek WWTP Lat: 39.30470 Long: -84.43080

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
40-015	NORTHERN HOG SUCKER	I	М	S	R	2	4.0	1.05	80	1.72	20.0
40-016	WHITE SUCKER	0	Т	S	W	12	24.0	6.28	340	7.33	14.1
43-001	COMMON CARP	0	Т	М	G	67	134.0	35.08	2300	49.57	17.1
43-025	STRIPED SHINER	1		S	Ν	7	14.0	3.66	320	6.90	22.8
43-044	CENTRAL STONEROLLER	Н		Ν	N	1	2.0	0.52	20	0.43	10.0
47-004	YELLOW BULLHEAD	1	Т	С		3	6.0	1.57	240	5.17	40.0
77-006	LARGEMOUTH BASS	С		С	F	6	12.0	3.14	360	7.76	30.0
77-008	GREEN SUNFISH	1	Т	С	S	60	120.0	31.41	640	13.79	5.3
77-009	BLUEGILL SUNFISH	1	Р	С	S	22	44.0	11.52	300	6.47	6.8
80-014	JOHNNY DARTER	1		С	D	6	12.0	3.14	20	0.43	1.6
80-022	RAINBOW DARTER	1	M	S	D	2	4.0	1.05	8	0.17	2.0
80-023	ORANGETHROAT DARTER	1		S	D	2	4.0	1.05	8	0.17	2.0
80-024	FANTAIL DARTER	I		С	D	1	2.0	0.52	4	0.09	2.0

No Species: 13 Nat. Species: 12 Hybrids: 0 Total Counted: 191 Total Rel. Wt.: 4640

IBI: 30.0 **Mlwb:** N/A

B3 - 56 03/31/2022

Site ID: MC15 River: 23-006 East Fork Mill Creek RM: 0.96 Date: 07/08/2021

Time Fished: 1936 Distance: 0.150 Drainge (sq mi): 9.3 Depth: 0

Location: dst. Butler Co. Upper Mill Creek WWTP Lat: 39.30210 Long: -84.43130

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No Fish		Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
40-015	NORTHERN HOG SUCKER	1	М	S	R		4	8.0	1.48	0	0.00	0.0
40-016	WHITE SUCKER	0	Т	S	W	3	3	66.0	12.22	0	0.00	0.0
43-001	COMMON CARP	0	Т	М	G		8	16.0	2.96	0	0.00	0.0
43-032	SPOTFIN SHINER	1		М	Ν		2	4.0	0.74	0	0.00	0.0
43-044	CENTRAL STONEROLLER	Н		Ν	N	1	7	34.0	6.30	0	0.00	0.0
47-004	YELLOW BULLHEAD	1	Т	С			4	8.0	1.48	0	0.00	0.0
77-006	LARGEMOUTH BASS	С		С	F		1	2.0	0.37	0	0.00	0.0
77-008	GREEN SUNFISH	1	Т	С	S	11	1	222.0	41.11	0	0.00	0.0
77-009	BLUEGILL SUNFISH	1	Р	С	S	6	3	126.0	23.33	0	0.00	0.0
80-022	RAINBOW DARTER	1	М	S	D	1	0	20.0	3.70	0	0.00	0.0
80-023	ORANGETHROAT DARTER	1		S	D	1	7	34.0	6.30	0	0.00	0.0

No Species: 11 Nat. Species: 10 Hybrids: 0 Total Counted: 270 Total Rel. Wt.: 0

IBI: 34.0 **Mlwb:** N/A

B3 - 57 03/31/2022

Site ID: MC15 River: 23-006 East Fork Mill Creek RM: 0.96 Date: 09/13/2021

Time Fished: 1169 Distance: 0.150 Drainge (sq mi): 9.3 Depth: 0

Location: dst. Butler Co. Upper Mill Creek WWTP Lat: 39.30210 Long: -84.43130

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	• •		% by No.	Rel. Wt.	% by Wt.	Av. Wt.
40-015	NORTHERN HOG SUCKER	I	М	S	R	(6 1	2.0	1.59	2400	5.47	200.0
40-016	WHITE SUCKER	0	Т	S	W	19	9 3	8.0	5.04	1160	2.65	30.5
43-001	COMMON CARP	0	Т	М	G	8	3 16	6.0	22.02	34900	79.59	210.2
43-013	CREEK CHUB	G	Т	Ν	Ν		1	2.0	0.27	40	0.09	20.0
43-025	STRIPED SHINER	I		S	N		1	2.0	0.27	20	0.05	10.0
43-034	SAND SHINER	1	М	М	N	;	3	6.0	0.80	40	0.09	6.6
43-043	BLUNTNOSE MINNOW	0	Т	С	N		1	2.0	0.27	40	0.09	20.0
43-044	CENTRAL STONEROLLER	Н		Ν	N	3	1 6	2.0	8.22	580	1.32	9.3
47-004	YELLOW BULLHEAD	1	Т	С		:	2	4.0	0.53	860	1.96	215.0
77-008	GREEN SUNFISH	1	Т	С	S	18	4 36	8.0	48.81	3380	7.71	9.1
77-009	BLUEGILL SUNFISH	1	Р	С	S	2	4 4	8.0	6.37	380	0.87	7.9
80-014	JOHNNY DARTER	1		С	D	:	5 1	0.0	1.33	20	0.05	2.0
80-022	RAINBOW DARTER	I	М	S	D	:	2	4.0	0.53	8	0.02	2.0
80-023	ORANGETHROAT DARTER	I		S	D	1:	5 3	0.0	3.98	20	0.05	0.6

No Species: 14 Nat. Species: 13 Hybrids: 0 Total Counted: 377 Total Rel. Wt.: 43848

IBI: 34.0 **MIwb:** N/A

B3 - 58 03/31/2022

Site ID: MC14 River: 23-006 East Fork Mill Creek RM: 0.66 Date: 07/08/2021

Time Fished: 2008 Distance: 0.150 Drainge (sq mi): 9.5 Depth: 0

Location: dst. Crescentville Rd. Lat: 39.29820 Long: -84.42970

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
40-015	NORTHERN HOG SUCKER	I	М	S	R	17	34.0	6.20	0	0.00	0.0
40-016	WHITE SUCKER	0	Т	S	W	41	82.0	14.96	0	0.00	0.0
43-001	COMMON CARP	0	Т	М	G	11	22.0	4.01	0	0.00	0.0
43-025	STRIPED SHINER	1		S	N	4	8.0	1.46	0	0.00	0.0
43-044	CENTRAL STONEROLLER	Н		Ν	N	1	2.0	0.36	0	0.00	0.0
47-004	YELLOW BULLHEAD	1	Т	С		3	6.0	1.09	0	0.00	0.0
77-005	SPOTTED BASS	С		С	F	1	2.0	0.36	0	0.00	0.0
77-006	LARGEMOUTH BASS	С		С	F	3	6.0	1.09	0	0.00	0.0
77-008	GREEN SUNFISH	1	Т	С	S	136	272.0	49.64	0	0.00	0.0
77-009	BLUEGILL SUNFISH	1	Р	С	S	51	102.0	18.61	0	0.00	0.0
80-014	JOHNNY DARTER	1		С	D	3	6.0	1.09	0	0.00	0.0
80-023	ORANGETHROAT DARTER	ļ		S	D	3	6.0	1.09	0	0.00	0.0

No Species: 12 Nat. Species: 11 Hybrids: 0 Total Counted: 274 Total Rel. Wt.: 0

IBI: 30.0 **Mlwb:** N/A

B3 - 59 03/31/2022

Site ID: MC14 River: 23-006 East Fork Mill Creek RM: 0.66 Date: 09/14/2021

Time Fished: 1129 Distance: 0.150 Drainge (sq mi): 9.5 Depth: 0

Location: dst. Crescentville Rd. Lat: 39.29820 Long: -84.42970

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
40-015	NORTHERN HOG SUCKER	I	М	S	R	9	18.0	6.12	4000	35.34	222.2
40-016	WHITE SUCKER	0	Т	S	W	13	26.0	8.84	3540	31.27	136.1
43-001	COMMON CARP	0	Т	М	G	18	36.0	12.24	900	7.95	25.0
43-025	STRIPED SHINER	I		S	N	7	14.0	4.76	400	3.53	28.5
47-004	YELLOW BULLHEAD	1	Т	С		2	4.0	1.36	320	2.83	80.0
77-008	GREEN SUNFISH	1	Т	С	S	71	142.0	48.30	1560	13.78	10.9
77-009	BLUEGILL SUNFISH	I	Р	С	S	27	54.0	18.37	600	5.30	11.1

No Species: 7 Nat. Species: 6 Hybrids: 0 Total Counted: 147 Total Rel. Wt.: 11320

IBI: 26.0 **Mlwb:** N/A

B3 - 60 03/31/2022

Site ID: MC16 River: 23-006 East Fork Mill Creek RM: 0.39 Date: 07/07/2021

Time Fished: 1027 Distance: 0.120 Drainge (sq mi): 9.5 Depth: 0

Location: dst. Fada Rd/ ust. confluence Mill Creek Lat: 39.29420 Long: -84.43000

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
40-015	NORTHERN HOG SUCKER	I	М	S	R	4	10.0	4.00	0	0.00	0.0
40-016	WHITE SUCKER	0	Т	S	W	11	27.5	11.00	0	0.00	0.0
43-001	COMMON CARP	0	Т	M	G	4	10.0	4.00	0	0.00	0.0
43-025	STRIPED SHINER	1		S	N	2	5.0	2.00	0	0.00	0.0
43-044	CENTRAL STONEROLLER	Н		N	N	1	2.5	1.00	0	0.00	0.0
47-004	YELLOW BULLHEAD	1	Т	С		2	5.0	2.00	0	0.00	0.0
77-006	LARGEMOUTH BASS	С		С	F	2	5.0	2.00	0	0.00	0.0
77-008	GREEN SUNFISH	1	Т	С	S	62	155.0	62.00	0	0.00	0.0
77-009	BLUEGILL SUNFISH	1	Р	С	S	9	22.5	9.00	0	0.00	0.0
77-015	GREEN SF X BLUEGILL SF					1	2.5	1.00	0	0.00	0.0
80-014	JOHNNY DARTER	I		С	D	1	2.5	1.00	0	0.00	0.0
80-022	RAINBOW DARTER	I	М	S	D	1	2.5	1.00	0	0.00	0.0

No Species: 11 Nat. Species: 10 Hybrids: 1 Total Counted: 100 Total Rel. Wt.: 0

IBI: 30.0 **Mlwb:** N/A

B3 - 61 03/31/2022

Site ID: MC16 River: 23-006 East Fork Mill Creek RM: 0.39 Date: 09/13/2021

Time Fished: 1120 Distance: 0.150 Drainge (sq mi): 9.5 Depth: 0

Location: dst. Fada Rd/ ust. confluence Mill Creek Lat: 39.29420 Long: -84.43000

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. ish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
40-015	NORTHERN HOG SUCKER	I	M	S	R	7	14.0	9.59	2600	10.86	185.7
40-016	WHITE SUCKER	0	Т	S	W	4	8.0	5.48	640	2.67	80.0
43-001	COMMON CARP	0	Т	М	G	3	6.0	4.11	18000	75.16	3000.0
47-004	YELLOW BULLHEAD	1	Т	С		1	2.0	1.37	700	2.92	350.0
77-006	LARGEMOUTH BASS	С		С	F	2	4.0	2.74	560	2.34	140.0
77-008	GREEN SUNFISH	1	Т	С	S	44	88.0	60.27	1120	4.68	12.7
77-009	BLUEGILL SUNFISH	1	Р	С	S	10	20.0	13.70	320	1.34	16.0
80-023	ORANGETHROAT DARTER	1		S	D	2	4.0	2.74	10	0.04	2.5

No Species: 8 Nat. Species: 7 Hybrids: 0 Total Counted: 73 Total Rel. Wt.: 23950

IBI: 26.0 **Mlwb:** N/A

B3 - 62 03/31/2022

Site ID: MR-1 River: 23-009 (Rossmoyne Creek (RM 14.05)) Cooper RM: 3.57 Date: 09/17/2021

Creek

Time Fished: Distance: Drainge (sq mi): Depth:

1183 0.170 0.3 Location: Lat: Long:

20m dst Bechtold sewer outlet, Bechtold Park 39.21850 -84.38930

0

Species IBI No. % by Feed Toler-Breed Rel. % by Rel. Av. Code: Species Name: Fish Guild ance Guild Group No. No. Wt. Wt. Wt. 43-011 WESTERN BLACKNOSE DACE Т S Ν 17 30.0 8.25 44 4.41 1.4 Т 43-013 G 204.7 **CREEK CHUB** Ν Ν 116 56.31 831 83.07 4.0 43-044 CENTRAL STONEROLLER Н Ν Ν 73 128.9 35.44 125 12.52 0.9

No Species: 3 Nat. Species: 3 Hybrids: 0 Total Counted: 206 Total Rel. Wt.: 1000

IBI: 28.0 **Mlwb:** N/A

B3 - 63 03/31/2022

Site ID: MR-2 River: 23-009 (Rossmoyne Creek (RM 14.05)) Cooper RM: 3.42 Date: 09/17/2021

Creek

Time Fished: Distance: Drainge (sq mi): Depth:

1710 0.150 0.4 Lat: Long:

20m ust Plainfield Rd., Bechtold Park 39.21940 -84.39120

0

Species IBI No. % by Feed Toler-Breed Rel. % by Rel. Av. Code: Species Name: Fish Guild ance Guild Group No. No. Wt. Wt. Wt. 43-011 WESTERN BLACKNOSE DACE Т S Ν 72 144.0 16.18 222 7.62 1.5 Т 43-013 G **CREEK CHUB** Ν Ν 268 536.0 60.22 2390 82.07 4.4 43-044 CENTRAL STONEROLLER Н Ν Ν 105 210.0 23.60 300 10.30 1.4

No Species: 3 Nat. Species: 3 Hybrids: 0 Total Counted: 445 Total Rel. Wt.: 2912

IBI: 28.0 **Mlwb:** N/A

B3 - 64 03/31/2022

Site ID: MR-3 River: 23-009 (Rossmoyne Creek (RM 14.05)) Cooper RM: 2.84 Date: 10/01/2021

Creek

Time Fished: Distance: Drainge (sq mi): Depth:

1357 0.150 1.1 Lat: Long:

50m dst. Wicklow Ave. 39.21710 -84.40560

Species IBI No. % by Feed Toler-Breed Rel. % by Rel. A۷. Code: Species Name: Fish Guild ance Guild Group No. No. Wt. Wt. Wt. 43-011 WESTERN BLACKNOSE DACE Т S Ν 12 24.0 5.15 50 3.09 2.0 43-013 G Т Ν 157 314.0 **CREEK CHUB** Ν 67.38 1404 86.77 4.4 Т С 43-042 **FATHEAD MINNOW** 0 Ν 2 4.0 0.86 10 0.62 2.5 43-044 CENTRAL STONEROLLER Н Ν Ν 62 9.52 124.0 26.61 154 1.2

No Species: 4 Nat. Species: 4 Hybrids: 0 Total Counted: 233 Total Rel. Wt.: 1618

IBI: 30.0 **Mlwb:** N/A

B3 - 65 03/31/2022

0

Site ID: MR-5 River: 23-009 (Rossmoyne Creek (RM 14.05)) Cooper RM: 2.59 Date: 10/01/2021

Creek

Time Fished: Distance: Drainge (sq mi): Depth:

497 0.150 1.8 Location: Lat: Long:

30m ust Arborcrest Ct. 39.21890 -84.41000

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
43-011	WESTERN BLACKNOSE DACE	G	Т	S	N	30	60.0	6.68	150	5.43	2.5
43-013	CREEK CHUB	G	Т	Ν	N	155	310.0	34.52	1420	51.45	4.5
43-042	FATHEAD MINNOW	0	Т	С	N	1	2.0	0.22	2	0.07	1.0
43-044	CENTRAL STONEROLLER	Н		Ν	N	263	526.0	58.57	1188	43.04	2.2

No Species: 4 Nat. Species: 4 Hybrids: 0 Total Counted: 449 Total Rel. Wt.: 2760

IBI: 30.0 **Mlwb:** N/A

B3 - 66 03/31/2022

0

Site ID: MR-6 River: 23-009 (Rossmoyne Creek (RM 14.05)) Cooper RM: 2.13 Date: 09/24/2021

Creek

Time Fished: Distance: Drainge (sq mi): Depth:

3230 0.150 2.6 Location: Lat: Long:

200m dst Ronald Reagan Hwy 126 39.22250 -84.41570

0

Species IBI No. % by Feed Toler-**Breed** Rel. % by Rel. A۷. Code: Species Name: Fish Guild ance Guild Group No. No. Wt. Wt. Wt. 40-016 WHITE SUCKER 0 Т S W 5 10.0 0.67 472 5.99 47.2 43-011 WESTERN BLACKNOSE DACE Т S 202.0 G Ν 101 13.47 412 5.23 2.0 Т 43-013 **CREEK CHUB** G Ν 252 504.0 33.60 4504 57.17 8.9 Ν 43-044 CENTRAL STONEROLLER Н Ν 383 766.0 Ν 51.07 2452 31.12 3.2 ORANGETHROAT DARTER 80-023 S D 9 ı 18.0 1.20 38 0.48 2.1

No Species: 5 Nat. Species: 5 Hybrids: 0 Total Counted: 750 Total Rel. Wt.: 7878

IBI: 32.0 **MIwb:** N/A

B3 - 67 03/31/2022

Site ID: MC118 River: 23-009 (Rossmoyne Creek (RM 14.05)) Cooper RM: 1.58 Date: 08/16/2021

Creek

Time Fished: Distance: Drainge (sq mi): Depth:

1191 0.150 3.9 Location: Lat: Long:

end of N. Kathwood Cir. 39.22960 -84.41560

0

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. <u>Wt</u> .
40-016	WHITE SUCKER	0	Т	S	W	7	14.0	3.68	0	0.00	0.0
43-011	WESTERN BLACKNOSE DACE	E G	Т	S	N	12	24.0	6.32	0	0.00	0.0
43-013	CREEK CHUB	G	Т	N	N	31	62.0	16.32	0	0.00	0.0
43-025	STRIPED SHINER	I		S	N	3	6.0	1.58	0	0.00	0.0
43-043	BLUNTNOSE MINNOW	0	Т	С	N	3	6.0	1.58	0	0.00	0.0
43-044	CENTRAL STONEROLLER	Н		Ν	Ν	83	166.0	43.68	0	0.00	0.0
77-008	GREEN SUNFISH	1	Т	С	S	2	4.0	1.05	0	0.00	0.0
80-014	JOHNNY DARTER	I		С	D	2	4.0	1.05	0	0.00	0.0
80-022	RAINBOW DARTER	1	М	S	D	5	10.0	2.63	0	0.00	0.0
80-023	ORANGETHROAT DARTER	I		S	D	17	34.0	8.95	0	0.00	0.0
80-024	FANTAIL DARTER	I		С	D	25	50.0	13.16	0	0.00	0.0

No Species: 11 Nat. Species: 11 Hybrids: 0 Total Counted: 190 Total Rel. Wt.: 0

IBI: 46.0 **MIwb:** N/A

B3 - 68 03/31/2022

Site ID: MC119 River: 23-009 (Rossmoyne Creek (RM 14.05)) Cooper RM: 0.44 Date: 08/16/2021

Creek

Time Fished: Distance: Drainge (sq mi): Depth:

1072 0.150 5.4 Lat: Long:

ust. Reading Rd. 39.23580 -84.42870

0

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
40-016	WHITE SUCKER	0	Т	S	W	5	10.0	1.51	0	0.00	0.0
43-011	WESTERN BLACKNOSE DACE	G	Т	S	N	27	54.0	8.16	0	0.00	0.0
43-013	CREEK CHUB	G	Т	N	N	37	74.0	11.18	0	0.00	0.0
43-025	STRIPED SHINER	I		S	N	11	22.0	3.32	0	0.00	0.0
43-043	BLUNTNOSE MINNOW	0	Т	С	N	17	34.0	5.14	0	0.00	0.0
43-044	CENTRAL STONEROLLER	Н		N	N	177	354.0	53.47	0	0.00	0.0
77-006	LARGEMOUTH BASS	С		С	F	2	4.0	0.60	0	0.00	0.0
77-008	GREEN SUNFISH	I	Т	С	S	6	12.0	1.81	0	0.00	0.0
80-014	JOHNNY DARTER	ı		С	D	4	8.0	1.21	0	0.00	0.0
80-022	RAINBOW DARTER	I	М	S	D	5	10.0	1.51	0	0.00	0.0
80-023	ORANGETHROAT DARTER	ı		S	D	7	14.0	2.11	0	0.00	0.0
80-024	FANTAIL DARTER	I		С	D	33	66.0	9.97	0	0.00	0.0

No Species: 12 Nat. Species: 12 Hybrids: 0 Total Counted: 331 Total Rel. Wt.: 0

IBI: 46.0 **Mlwb:** N/A

B3 - 69 03/31/2022

Site ID: MC97 River: 23-028 Trib to West Fork Creet at RM 1.24 RM: 1.49 Date: 08/16/2021

Time Fished: 740 Distance: 0.150 Drainge (sq mi): 0.8 Depth: 0

Location: Kirby Rd. Lat: 39.17960 Long: -84.55610

Species IBI No. Rel. % by Feed Toler-Breed % by Rel. Av. Code: Species Name: Fish Guild ance Guild Group No. No. Wt. Wt. Wt. **** NO FISH 99-999 0 0.0 0 0.00

No Species: 0 Nat. Species: 1 Hybrids: 0 Total Counted: 0 Total Rel. Wt.: 0

IBI: 12.0 **Mlwb:** N/A

B3 - 70 03/31/2022

Site ID: MC109 River: 23-028 Trib to West Fork Creet at RM 1.24 RM: 1.11 Date: 08/16/2021

Time Fished: 480 Distance: 0.150 Drainge (sq mi): 0.9 Depth: 0

Location: Along Wooden Shoe Hollow Ln. Lat: 39.18540 Long: -84.52130

Species Code:	Species Name:	Feed Tolei Guild ance	 IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
99-999	NO FISH			0	0.0	*** **	0	0.00	****

No Species: 0 Nat. Species: 1 Hybrids: 0 Total Counted: 0 Total Rel. Wt.: 0

IBI: 12.0 **Mlwb:** N/A

B3 - 71 03/31/2022

Unnamed Trib to (Rossmoyne Creek) Site ID: MR-4b River: 23-046 RM: 0.55 Date: 09/17/2021

Cooper Creek

Guild

ance

Drainge (sq mi): Depth: Time Fished: Distance:

663 0.150 0.4Location: Lat: Long:

Guild

Hamilton Co. SWCD 39.21110 -84.40900

Species % by IBI No. Rel. % by Rel. Feed Toler-Breed Av. Code: Species Name:

Group

Fish

No.

No.

.** Dry Site 0 * 99-997 0.0 0 0.00

Hybrids: 0 **Total Counted:** Total Rel. Wt.: No Species: 1 Nat. Species: 0

IBI: 12.0 Mlwb: N/A

> 03/31/2022 B3 - 72

0

Wt.

Wt.

Site ID: MC108 River: 23-068 Lick Run (Trib to Mill Creek @ RM 1.70 RM: 1.70 Date: 08/16/2021

Time Fished: 0 Distance: 0.150 Drainge (sq mi): 0.1 Depth: 0

Location: Glenway Woods Lat: 39.11740 Long: -84.56750

Species	Species Name:	Feed Toler-	Breed IBI	No.	Rel.	% by	Rel.	% by	Av.
Code:		Guild ance	Guild Group	Fish	No.	No.	Wt.	Wt.	Wt.
99-997	Dry Site			0	0.0	*** **	0	0.00	*****

No Species: 1 Nat. Species: 1 Hybrids: 0 Total Counted: 0 Total Rel. Wt.: 0

IBI: 12.0 **Mlwb:** N/A

B3 - 73 03/31/2022

Site ID: MC106 River: 23-068 Lick Run (Trib to Mill Creek @ RM 1.70 RM: 0.98 Date: 07/09/2021

Time Fished: 806 Distance: 0.150 Drainge (sq mi): 3.4 Depth: 0

Location: Grotto Court Lat: 39.12610 Long: -84.56150

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
43-002	GOLDFISH	0	Т	М	G	1	2.0	2.94	0	0.00	0.0
43-042	FATHEAD MINNOW	0	Т	С	N	28	56.0	82.35	0	0.00	0.0
57-001	WESTERN MOSQUITOFISH	- 1		Ν	E	1	2.0	2.94	0	0.00	0.0
77-008	GREEN SUNFISH	I	Т	С	S	4	8.0	11.76	0	0.00	0.0

No Species: 4 Nat. Species: 2 Hybrids: 0 Total Counted: 34 Total Rel. Wt.: 0

IBI: 16.0 **Mlwb:** N/A

B3 - 74 03/31/2022

Site ID: MC107 River: 23-068 Lick Run (Trib to Mill Creek @ RM 1.70 RM: 0.45 Date: 07/09/2021

Time Fished: 1292 Distance: 0.150 Drainge (sq mi): 3.5 Depth: 0

Location: Queen City and Cora Ave. Lat: 39.12540 Long: -84.55180

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
43-042	FATHEAD MINNOW	0	Т	С	N	15	30.0	48.39	0	0.00	0.0
57-001	WESTERN MOSQUITOFISH	1		Ν	Е	6	12.0	19.35	0	0.00	0.0
77-008	GREEN SUNFISH	1	Т	С	S	10	20.0	32.26	0	0.00	0.0

No Species: 3 Nat. Species: 2 Hybrids: 0 Total Counted: 31 Total Rel. Wt.: 0

IBI: 20.0 **Mlwb:** N/A

B3 - 75 03/31/2022

MBI/2022-6-8 Mill Creek Bioassessment 2021 3, 2022

APPENDIX C

Mill Creek 2021 Macroinvertebrate Assemblage Data
C-1: Invertebrate Community Index (ICI) Metrics and Scores
C-2: Macroinvertebrate Taxa by Site and Sample

Appendix Table C-1. ICI metrics and values in the Mill Creek watershed study area during 2021.

		Drainag			Number o				Percer	nt:			_
Site_ID	River Mile	Area (sq mi)	Total Taxa	Mayfly Taxa	Caddisfly Taxa	Dipteran Taxa	Mayflies	Caddis- flies	Tany- tarsini	Other Dipt/NI	Tolerant Organisms		ICI or Narrative
Mill Creek	(23-001))											
Yea	r: 202 1												
MC00	26.00	4.4	34(4)	2(0)	4(6)	20(6)	4.6(2)	1.6(6)	40.1(6)	51.2(2)	2.9(6)	10(6)	44
MC12	19.10	26.5	34(4)	3(2)	5(6)	16(4)	13.4(4)	29.4(6)	9.3(2)	44.4(4)	2.0(6)	8(4)	42
MC10	18.70	27.0	26(4)	5(4)	5(6)	9(2)	17.6(4)	45.9(6)	10.4(2)	25.0(6)	0.3(6)	8(4)	44
MC08	18.37	27.3	41(6)	4(2)	5(6)	21(6)	8.5(2)	18.6(6)	11.8(2)	59.2(2)	5.8(6)	13(6)	44
MC08	18.10	32.4	41(6)	4(2)	5(6)	21(6)	8.5(2)	18.6(6)	11.8(2)	59.2(2)	5.8(6)	13(6)	44
MC101	17.96	26.9	30(4)	2(0)	5(6)	12(2)	7.0(2)	54.0(6)	15.3(4)	22.9(6)	1.2(6)	9(4)	40
MC06	16.60	50.5	31(4)	3(2)	6(6)	11(2)	3.7(2)	67.6(6)	6.7(2)	21.2(6)	3.1(6)	11(4)	40
MC04	15.41	61.3	31(4)	3(2)	6(6)	11(2)	16.8(4)	45.9(6)	0.9(2)	35.1(4)	0.7(6)	11(4)	40
MC04	15.10	62.5	31(4)	3(2)	6(6)	11(2)	16.8(4)	45.9(6)	0.9(2)	35.1(4)	0.7(6)	11(4)	40
MC11	13.96	68.8	27(4)	3(2)	7(6)	10(2)	1.0(2)	74.8(6)	1.7(2)	22.3(6)	1.3(6)	12(4)	40
MC11	13.90	68.8	27(4)	3(2)	7(6)	10(2)	1.0(2)	74.8(6)	1.7(2)	22.3(6)	1.3(6)	12(4)	40
MC104	13.70	71.6	37(4)	6(4)	5(6)	19(4)	35.3(6)	36.8(6)	7.6(2)	20.2(6)	1.0(6)	9(2)	46
VIC02	13.10	72.2	39(6)	5(2)	5(6)	21(6)	14.2(2)	21.2(6)	16.3(4)	44.2(4)	2.9(6)	13(4)	46
MC01	11.70	73.9	28(4)	6(4)	6(6)	13(2)	10.2(2)	61.8(6)	6.1(2)	21.9(6)	0.9(6)	11(4)	42
MC80	10.50	118.0	24(2)	3(2)	5(6)	9(2)	14.7(2)	66.5(6)	2.2(2)	16.6(6)	0.3(6)	9(2)	36
MC80	10.48	115.0	24(2)	3(2)	5(6)	9(2)	14.7(2)	66.5(6)	2.2(2)	16.6(6)	0.3(6)	9(2)	36
VIC105	9.24	119.0	26(4)	5(2)	5(6)	10(2)	8.8(2)	66.8(6)	2.9(2)	21.3(6)	0.2(6)	8(2)	38
VIC79	8.68	120.0	31(4)	5(2)	5(6)	13(4)	12.0(2)	65.1(6)	2.2(2)	20.4(6)	0.5(6)	8(2)	40
MC77	7.65	126.0	26(4)	4(2)	4(4)	11(2)	13.1(2)	63.0(6)	3.5(2)	20.3(6)	1.0(6)	11(4)	38
MC09	6.80	127.0	18(2)	1(0)	3(4)	10(2)	7.0(2)	31.1(6)	6.4(2)	51.9(2)	10.5(2)	5(2)	24
MC07	6.35	135.0	21(2)	3(2)	3(4)	10(2)	1.7(2)	8.9(2)	4.7(2)	84.3(0)	40.3(0)	3(0)	16
MC75	4.84	139.0	34(4)	3(2)	3(4)	17(4)	0.6(2)	9.5(4)	16.9(2)	71.9(0)	7.9(4)	7(2)	28
MC74	4.60	141.0	27(4)	2(0)	4(4)	14(4)	1.0(2)	10.8(4)	9.4(2)	78.5(0)	2.9(6)	6(2)	28
MC73	3.60	144.0	40(6)	6(4)	5(6)	19(6)	5.5(2)	50.9(6)	11.2(2)	32.3(4)	1.3(6)	7(2)	44
MC72	3.10	155.0	35(4)	3(2)	6(6)	17(4)	4.9(2)	48.2(6)	2.1(2)	44.4(2)	1.3(6)	7(2)	36
MC05	2.50	154.0	42(6)	5(2)	5(6)	21(6)	2.0(2)	42.2(6)	9.1(2)	46.1(2)	7.1(4)	5(0)	36
MC03	1.69	163.0	33(4)	3(2)	3(4)	17(4)	1.5(2)	8.8(2)	5.6(2)	83.1(0)	18.1(0)	2(0)	20
West Fork	Mill Cree	ek (23-00	04)										
Yea	r: 202 1												
MC45	0.20	36.4	15(2)	2(0)	1(2)	9(2)	71.5(6)	2.3(2)	4.5(2)	21.7(6)	5.6(6)	8(2)	30
East Fork		k (23-00	(6)										
	r: 2021												
MC18	2.00	8.1 - Very Po	29(4)	3(2)	2(4)	17(4)	37.8(6)	4.2(6)	9.0(2)	47.1(2)	3.5(6)	12(6)	42

Appendix Table C-1. ICI metrics and values in the Mill Creek watershed study area during 2021.

		Drainag			Number o				Percer	nt:			_
Site_ID	River Mile	Area (sq mi)	Total Taxa	Mayfly Taxa	Caddisfly Taxa	Dipteran Taxa	Mayflies	Caddis- flies	Tany- tarsini	Other Dipt/NI	Tolerant Organisms		ICI or Narrative
MC18	1.14	9.4	29(4)	3(2)	2(4)	17(4)	37.8(6)	4.2(6)	9.0(2)	47.1(2)	3.5(6)	12(6)	42
MC15	1.05	9.3	28(4)	1(0)	5(6)	14(4)	0.4(2)	5.2(6)	9.2(4)	84.4(0)	30.1(0)	7(4)	30
MC14	0.72	9.5	24(2)	3(2)	5(6)	10(2)	0.9(2)	25.5(6)	20.5(6)	52.2(2)	5.2(6)	7(4)	38
MC16	0.10	9.4	34(4)	2(0)	5(6)	19(4)	0.6(2)	17.9(6)	33.6(6)	47.8(2)	17.8(4)	6(2)	36
Coopers C	reek (Ro	ssmoyn	e Cree	k RM 14	.05) (23-00	09)							
Year	r: 2021												
MC111	3.57	0.3										0	VP
MC112	3.42	0.4										4	F
MC113	2.84	1.1										0	VP
MC32	2.59	1.8										0	VP
/IC28	2.13	2.6										7	MG
MC118	1.58	4.0										10	G
MC119	0.46	5.4										10	G
Trib to We	st Fork C	Creek @	RM 1.2	24 (23-0	28)								
Year	r: 2021												
MC97	1.40	8.0										9	
Unamed T	rib to Co	oper Cre	ek at l	RM 2.80	(23-046)								
Year	r: 2021												
MC114	0.55	0.7										0	VP
Kings Run	(23-065	5)											
	r: 2021												
MC109	1.00	0.9										10	
Lick Run(-												
	r: 2021												
MC108	1.70	0.2										1	_
MC106	0.98	3.5										1	Р
MC107	0.45	3.6										3	Р

	Code:23-001 River: Mill				Coll	. <i>D</i> alo,03/0	7/2021 RM:	26.00
	D: MC00 Location	: dst. Libery-	Fairfield Rd.				Sample):
Taxa Code	Taxa	CWH Taxa Tol.	Qt./Ql.	Taxa Code	Taxa		CWH Taxa Tol.	Qt./QI.
01801	Turbellaria	F	6 +		scalaenum group			
02000	Nematoda		4	85500	Paratanytarsus sp		F	140
03600	Oligochaeta	т	+	85625	Rheotanytarsus sp		F	70 +
04664	Helobdella stagnalis	Т	1 +	85821	Tanytarsus glabrescen	s group sp 7	F	281
05900	Lirceus sp	MT	8 +	95100	Physella sp		Т	+
06700	Crangonyx sp	MT	1 +	96801	Ancylidae		F	4
11120	Baetis flavistriga	F	+	97601	Corbicula fluminea		F	+
11130	Baetis intercalaris	F	+ -					
13521	Stenonema femoratum	F	36 +	No. G	Quantitative Taxa:	34	Total Taxa;	48
17200	Caenis sp	F	20 +	No C	Qualitative Taxa:	28	ICI:	44
21200	Calopteryx sp	F	6 +					
22001	Coenagrionidae	Т	+	Numi	per of Organisms:	1223	Qual EPT:	10
22300	Argia sp	F	21 +					
50301	Chimarra aterrima	MI	+					
50315	Chimarra obscura	MI	+					
51050	Cernotina sp	MI	+					
51600	Polycentropus sp	MI	1					
52200	Cheumatopsyche sp	F	1 +					
52430	Ceratopsyche morosa group	MI	+					
52530	Hydropsyche depravata group	F	1 +					
53800	Hydroptila sp	F	16					
68075	Psephenus herricki	MI	+					
68601	Ancyronyx variegata	F	+					
69400	Stenelmis sp	F	+					
71900	Tipula sp	F	+					
77120	Ablabesmyia mallochi	F	12					
77500	Conchapelopia sp	F	58					
77800	Helopelopia sp	F	12					
78450	Nilotanypus fimbriatus	F	24					
80370	Corynoneura lobata	F	20					
80410	Cricotopus (C.) sp	F	12					
	Parametriocnemus sp	ΧF	12					
83040	Dicrotendipes neomodestus	F	105					
	Microtendipes pedellus group	F	12					
	Nilothauma sp	F	12					
84210	Paratendipes albimanus or P. duplicatus	F	117 +					
84300	Phaenopsectra obediens group	F	117 +					
	Polypedilum (Uresipedilum) flavum	F	23 +					
84460	Polypedilum (P.) fallax group	F	23					
	Polypedilum (P.) illinoense	Т	12					
84480	Polypedilum (P.) laetum group	МІ	12					
		F	23					

	Code: 23-001 River: <i>Mill</i>				Coll	. Date:09/0			19.10
Site I	D: MC12 Location	: ust. Windis	ch Rd.				Sai	mple:	1
Taxa Code	Taxa	CWH Taxa Tol.	Qt./QI.	Taxa Code	Taxa		CWH Taxa	Tol.	Qt./QI.
01801	Turbellaria	F	132 +	85230	Cladotanytarsus manc	us group	F	-	+
03000	Ectoprocta	F	2 +	85265	Cladotanytarsus vande	erwulpi group	М	I	+
03451	Urnatella gracilis	МІ	1		sp 5				
03600	Oligochaeta	т	13 +	85625	Rheotanytarsus sp		F	•	77
04664	Helobdella stagnalis	Т	+	85821	Tanytarsus glabrescen	s group sp 7	F	•	35 +
04964	Erpobdella microstoma	MT	+	85840	Tanytarsus sepp		F	•	14
08250	Orconectes (Procericambarus)	F	1 +	87540	Hemerodromia sp		F	•	12
	rusticus			96801	Ancylidae		F	•	11
11130	Baetis intercalaris	F	148 +	97601	Corbicula fluminea		F	•	1
11670	Procloeon viridoculare	MI	+						
13521	Stenonema femoratum	F	12 +	No. C	Quantitative Taxa:	34	Total Ta	axa;	48
17200	Caenis sp	F	22 +	No. C	Qualitative Taxa:	32		ICI:	42
21200	Calopteryx sp	F	+	Numl	per of Organisms:	1355	Qual E	PT:	8
21300	Hetaerina sp	F	1		Ü				-
22001	Coenagrionidae	Т	+						
22300	Argia sp	F	30 +						
50315	Chimarra obscura	MI	1 +						
51206	Cyrnellus fraternus	F	15						
52200	Cheumatopsyche sp	F	363 +						
52430	Ceratopsyche morosa group	MI	13 +						
52530	Hydropsyche depravata group	F	6 +						
	Petrophila sp	MI	+						
	Psephenus herricki	MI	+						
	Stenelmis sp	F	14 +						
	Simulium sp	F	+						
	Ablabesmyia mallochi	F	+						
	Ablabesmyia rhamphe group	MT	14						
		F	35						
77750	Hayesomyia senata or Thienemannimyia norena	F	70 +						
	Helopelopia sp	F	14						
	Nilotanypus fimbriatus	F	25						
	Cryptochironomus sp	F	+						
	Glyptotendipes (G.) sp	MT	35						
	Paracladopelma sp		+						
	Paralauterborniella nigrohalteralis	F	7						
84210	Paratendipes albimanus or P. duplicatus	F	+						
84300	Phaenopsectra obediens group	F	14						
84450	Polypedilum (Uresipedilum) flavum	F	161 +						
84460	Polypedilum (P.) fallax group	F	7						
84470	Polypedilum (P.) illinoense	T	7 +						
84540	Polypedilum (Tripodura) scalaenum group	F	42 +						

River C	Code: 23-001 River: <i>Mill</i>	Creek			Coll. Date	09/07/2021 RM:	18.70
Site ID	: MC10 Location	: Ust. Cresce	ntville Rd.			Sample:	
Taxa		CWH		Taxa		CWH	
Code	Таха	Taxa Tol.	Qt./QI.	Code	Taxa	Taxa Tol.	Qt./Ql.
01801 T	- urbellaria	F	84 +				
03000 E	Ectoprocta	F	1				
03600 C	Dligochaeta	Т	+				
04660 ⊢	Helobdella sp	MT	+				
08200 C	Orconectes sp	F	+				
11120 B	Baetis flavistriga	F	4 +				
11130 B	Baetis intercalaris	F	734 +				
12200 ls	sonychia sp	MI	4				
13521 S	Stenonema femoratum	F	19 +				
17200 C	Caenis sp	F	1 +				
22001 C	Coenagrionidae	Т	+				
22300 A	Argia sp	F	3 +				
50315 C	Chimarra obscura	MI	17 +				
51206 C	Cyrnellus fraternus	F	33				
52200 C	Cheumatopsyche sp	F	1099 +				
52430 C	Ceratopsyche morosa group	MI	42 +				
52530 H	Hydropsyche depravata group	F	799 +				
68708 C	Oubiraphia vittata group	F	1				
68901 N	Macronychus glabratus	F	16				
69400 S	Stenelmis sp	F	25 +				
	layesomyia senata or Thienemannimyia norena	F	87				
78450 N	Nilotanypus fimbriatus	F	15				
78655 P	Procladius (Holotanypus) sp	MT	+				
81240 N	Nanocladius (N.) distinctus	MT	15				
82820 C	Cryptochironomus sp	F	+				
83300 G	Glyptotendipes (G.) sp	MT	44				
84450 P	Polypedilum (Uresipedilum) flavum	F	815 +				
	Polypedilum (Tripodura) calaenum group	F	15 +				
85625 R	Rheotanytarsus sp	F	393 +				
85800 T	anytarsus sp	F	58				
87540 H	Hemerodromia sp	F	8				
95100 P	Physella sp	T	+				
95501 P	Planorbidae	MT	+				
97601 C	Corbicula fluminea	F	1 +				
No. Qu	uantitative Taxa: 26	Total Taxa;	34	_			
No. Qu	ualitative Taxa: 23	ICI:	44				
	er of Organisms: 4333	Qual EPT:					

River	Code: 23-001 River: <i>M</i>	ill Creek			Coll	. Date:09/1	3/2 <i>0</i> 21 RM	l:	18.10
Site I	Site ID: MC08 Location: ust. E. Branch Mill Creek				ience		Samp	le:	
Taxa Code	Taxa	CWH Taxa Tol.	Qt./Ql.	Taxa Code	Taxa		CWH Taxa To	ıl. Qt	./QI.
00401	Spongillidae	F	+	80420	Cricotopus (C.) bicinctu	ıs	т	25	+
01320	Hydra sp	F	98	81231	Nanocladius (N.) crass	icornus or	F	25	
01801	Turbellaria	F	100 +		N. (N.) "rectinervis"				
03040	Fredericella sp	F	2	81825	Rheocricotopus (Psiloc	ricotopus)	F	25	
03360	Plumatella sp	F	5 +	00404	robacki			0	
03451	Urnatella gracilis	MI	8	82101	Thienemanniella tauroo		MI -	8	
03600	Oligochaeta	Т	104 +	82730	Chironomus (C.) decor	us group	Т -		+
04601	Glossiphoniidae	MT	+	82820			F -		+
04666	Helobdella papillata	MT	+	82824		derosus	F		+
04930	Erpobdella sp	MT	+	83003	·		F -	470	+
06201	Hyalella azteca	F	+	83040	Dicrotendipes neomode	estus	F	178	
11120	Baetis flavistriga	F	22 +	83300			MT -	74	
11130	Baetis intercalaris	F	235 +	84450		,	F _	1088	
11600	Paracloeodes fleeki	MI	+	84470	. , ,		Т _	25	
11620	Paracloeodes minutus	MI	+	84540	Polypedilum (Tripodura scalaenum group	1)	F	99	+
11670	Procloeon viridoculare	MI	+	85230	Cladotanytarsus manci	is aroun	F		+
13521	Stenonema femoratum	F	34 +	85500	_	ao group	F	25	•
16700	Tricorythodes sp	MI	+	85625			F	222	+
17200	Caenis sp	F	67 +	85800	Tanytarsus sp		F		· +
21200	Calopteryx sp	F	+	85818	Tanytarsus glabrescen	s aroun sn 4	· F	25	•
22300	Argia sp	F	66 +	85821	Tanytarsus glabrescen	•	F	222	_
43300	Ranatra sp	F	+	85840	-	o group op r	F		· +
49200	Climacia sp	F	+		Hemerodromia sp		F		· +
50315	Chimarra obscura	MI	+		Physella sp		т	1	
51206	Cyrnellus fraternus	F	62 +		Ferrissia sp		· F	88	•
52200	Cheumatopsyche sp	F	543 +		Corbicula fluminea		F	23	+
52430	Ceratopsyche morosa group	MI	1		Corbicala naminoa		•	20	
52530	Hydropsyche depravata group	F	54 +	No C	Quantitative Taxa:	41	Total Taxa	; 67	
53800	Hydroptila sp	F	121 +						
59970	Petrophila sp	MI	10 +		Qualitative Taxa:	51	ICI	: 44	
68025	Ectopria sp	F	+	Numl	per of Organisms:	4193	Qual EPT	: 13	
68075	Psephenus herricki	MI	+						
69400	Stenelmis sp	F	+						
77120	Ablabesmyia mallochi	F	+						
77500	Conchapelopia sp	F	49						
77740	Hayesomyia senata	F	247 +						
77800	Helopelopia sp	F	99						
78140	Labrundinia pilosella	F	48						
78450	Nilotanypus fimbriatus	F	24						
78655	Procladius (Holotanypus) sp	MT	+						
78750	Rheopelopia paramaculipennis	MI	25						
80360	Corynoneura floridaensis	МІ	8 +						
80370	Corynoneura lobata	F	8						

	Code:23-001 River: Mill						JUII.	Date:09/1				17.9
	D: MC101 Location	: RR tres	tel dst. i	East Fo	ork Mill Ci	reek			Sa	mple	:	
Taxa Code	Taxa	CWH Taxa To	ol. G	t./QI.	Taxa Code	Ta	axa		CWH Taxa	Tol.	Qt./	/QI.
01801	Turbellaria	ı	F 6	8 +	85230	Cladotanytarsus m	nancu	ıs group	ı	=	4	F
	Ectoprocta	ı	F	1 +	85500	Paratanytarsus sp	,		ı	=	26	
03600	Oligochaeta	-	т 2	4		Rheotanytarsus sp			ı	=	796 +	F
	Erpobdella fervida	M ⁻		+		Tanytarsus sp			ı	=	80 +	F
	Hyalella azteca	ı	F	+	85821	Tanytarsus glabre	scens	group sp 7	ı	=	53 +	
	Orconectes (Procericambarus) rusticus	ı	F	+	87540	Hemerodromia sp Ancylidae				= =	9 32	
08601	Hydrachnidia	ı	F	9		Corbicula fluminea	,			=	1 +	L
	Baetis flavistriga	ı		1	97001	Corbicula numine	1					_
	Baetis intercalaris			4 +	No. C)antitativa Tav		00	Total T		40	
13521	Stenonema femoratum		F	+		Quantitative Tax		30	Total Ta		48	
	Caenis sp		· F	+	No. C	Qualitative Taxa	:	35		ICI:	40	
	Calopteryx sp			1	Numb	oer of Organism	ns:	6242	Qual E	PT:	9	
	Hetaerina sp			9								
	Coenagrionidae		Т	+								
	Argia sp			1 +								
	Chimarra obscura	M		+								
	Cyrnellus fraternus			т 1 +								
			г F 192									
	Cheumatopsyche sp			4 + 1 +								
	Ceratopsyche morosa group	M										
	Hydropsyche depravata group											
	Hydroptila sp			7 +								
	Petrophila sp	M		9 +								
	Psephenus herricki	M		+								
	Dubiraphia vittata group		F -	+								
	Stenelmis sp		F - 40	+								
	Hayesomyia senata or Thienemannimyia norena			3 +								
	Nilotanypus fimbriatus	I	F 1	6								
	Cricotopus (C.) bicinctus		Т	+								
	Nanocladius (N.) distinctus	M		6								
	Chironomus (C.) decorus group		Т	+								
	Cryptochironomus sp	ı	F	+								
32822	Cryptochironomus eminentia	ı	F	+								
	•	ı		6 +								
	Glyptotendipes (G.) sp	M		3								
	Polypedilum (Uresipedilum) flavum	I	F 100									
34470	Polypedilum (P.) illinoense	-	T 2	6								
34540	Polypedilum (Tripodura) scalaenum group	ı	F	+								
34700	Stenochironomus sp	ı	F	+								
34790	Tribelos fuscicorne	ı	F	+								
34960	Pseudochironomus sp	ı	F 2	6								

River Code:23-001 River: Mill Creek					Coll. Date:09/07/2021 RM: 16						
	D: MC06 Location	: ust. E. Sha	aron Rd.				Samp	e:			
Taxa Code	Taxa	CWH Taxa Tol.	Qt./Ql.	Taxa Code	Taxa		CWH Taxa To	I. Qt./QI.			
1801	Turbellaria	F	4 +	84790	Tribelos fuscicorne		F	+			
2000	Nematoda		+	84960	Pseudochironomus sp		F	14			
3600	Oligochaeta	т	144 +	85625	Rheotanytarsus sp		F	320 +			
4664	Helobdella stagnalis	Т	9 +	85800	Tanytarsus sp		F	+			
4901	Erpobdellidae	MT	17 +	85821	Tanytarsus glabrescens	s group sp 7	F	56			
6201	Hyalella azteca	F	+	85840	Tanytarsus sepp		F	+			
8601	Hydrachnidia	F	32 +	87540	Hemerodromia sp		F	32			
1120	Baetis flavistriga	F	+	95100	Physella sp		Т	+			
1130	Baetis intercalaris	F	194 +	96801	Ancylidae		F	64 +			
1620	Paracloeodes minutus	МІ	+	97601	Corbicula fluminea		F	24 +			
2200	Isonychia sp	МІ	3								
3521	Stenonema femoratum	F	+	No. G	uantitative Taxa:	31	Total Taxa	50			
6700	Tricorythodes sp	МІ	+	No. C	Qualitative Taxa:	41	ICI	40			
7200	Caenis sp	F	8 +								
1200	Calopteryx sp	F	+	Numi	per of Organisms:	5617	Qual EPT	: 11			
2001	Coenagrionidae	т	+								
2300	Argia sp	F	2 +								
0301	Chimarra aterrima	МІ	1 +								
0315	Chimarra obscura	МІ	10 +								
2200	Cheumatopsyche sp	F	2955 +								
2430	Ceratopsyche morosa group	МІ	98								
2530	Hydropsyche depravata group	F	716 +								
	Hydroptila sp	F	17 +								
	Petrophila sp	МІ	2 +								
	Hydroporini	т	+								
	Macronychus glabratus	F	9								
	Stenelmis sp	F	36 +								
	Ablabesmyia mallochi	F	+								
	Conchapelopia sp	F	14								
	Hayesomyia senata or Thienemannimyia norena	F	390 +								
9085	Telopelopia okoboji	MI	14								
	Corynoneura lobata	F	+								
	Cricotopus (C.) bicinctus	Т	+								
1825	Rheocricotopus (Psilocricotopus) robacki	F	14								
2822	Cryptochironomus eminentia	F	+								
2824	Cryptochironomus ponderosus	F	+								
3040	Dicrotendipes neomodestus	F	14 +								
4450	Polypedilum (Uresipedilum) flavum	F	376 +								
4470	Polypedilum (P.) illinoense	Т	28 +								
	Polypedilum (Tripodura) scalaenum group	F	+								

River: Mill Creek River Code:23-001 Coll. Date:09/07/2021 RM: 15.10 Site ID: MC04 Location: dst. Glendale Milford ExpWay behind 5/3 Bank Sample: Taxa **CWH CWH** Taxa Code Taxa Tol. Qt./QI. Taxa Tol. Qt./Ql. Taxa Code Taxa 00401 Spongillidae F 82824 Cryptochironomus ponderosus F + + F 01801 Turbellaria 764 + 83040 Dicrotendipes neomodestus F 5 + 03000 Ectoprocta F 84100 Paracladopelma sp 03600 Oligochaeta Т 84210 Paratendipes albimanus or P. F 8 + duplicatus 04901 Erpobdellidae MT + 84450 Polypedilum (Uresipedilum) flavum F 281 +05900 Lirceus sp MT 2 + 84470 Polypedilum (P.) illinoense Т + 06201 Hyalella azteca F F 36 + 84540 Polypedilum (Tripodura) F 24 +08601 Hydrachnidia scalaenum group ΜI 2 11020 Acerpenna pygmaea F 84888 Xenochironomus xenolabis + 2 + F 11120 Baetis flavistriga 85625 Rheotanytarsus sp F 9 F 596 + 11130 Baetis intercalaris F 85800 Tanytarsus sp 5 + ΜI 11670 Procloeon viridoculare F 18 85821 Tanytarsus glabrescens group sp 7 F 13521 Stenonema femoratum 85840 Tanytarsus sepp F + F 17200 Caenis sp 38 + 93900 Elimia sp MI 21200 Calopteryx sp F + F 16 + 96900 Ferrissia sp 1 21300 Hetaerina sp F 97601 Corbicula fluminea F + Т 22001 Coenagrionidae 98001 Pisidiidae 8 F 16 + 22300 Argia sp 50301 Chimarra aterrima ΜI 1 + No. Quantitative Taxa: Total Taxa: 31 57 21 + 50315 Chimarra obscura ΜI No. Qualitative Taxa: 40 50 ICI: 660 + F 52200 Cheumatopsyche sp 52430 Ceratopsyche morosa group 495 + ΜI Number of Organisms: Qual EPT: 3577 11 F 52530 Hydropsyche depravata group 426 +F 39 + 53800 Hydroptila sp 59970 Petrophila sp МІ + MT 65800 Berosus sp 68075 Psephenus herricki ΜI 68201 Scirtidae F 68708 Dubiraphia vittata group F 1 + 69400 Stenelmis sp F 30 +F 74100 Simulium sp 18 + F 77120 Ablabesmyia mallochi 77130 Ablabesmyia rhamphe group MT 77750 Hayesomyia senata or F 27 +Thienemannimyia norena 77800 Helopelopia sp F 18 +F 5 78450 Nilotanypus fimbriatus 78655 Procladius (Holotanypus) sp MT 80310 Cardiocladius obscurus ΜI 5 81825 Rheocricotopus (Psilocricotopus) F robacki 82730 Chironomus (C.) decorus group Т 82820 Cryptochironomus sp F

River Code:23-001 River: Mill Creek					Coll. Date:09/07/2021 RM:						
Site I	D: MC11 Locatio	n: <i>ust. Barrett</i>		Sam							
Taxa Code	Taxa	CWH Taxa Tol.	Qt./QI.	Taxa Code	Таха		CWH Taxa	Tol.	Qt./	/QI.	
1801	Turbellaria	F	52 +	84100	Paracladopelma sp				-	+	
	Oligochaeta	т	8 +		Paratendipes albimanus o	r P.	F	•	4 +		
	Lirceus sp	МТ	+	0.2.0	duplicatus						
06201	Hyalella azteca	F	+	84450	Polypedilum (Uresipedilum	n) flavum	F	•	201 -	F	
08601	Hydrachnidia	F	8 +	84470	Polypedilum (P.) illinoense)	7	Г	+	F	
11120	Baetis flavistriga	F	+	84540			F	•	8 +	F	
11130	Baetis intercalaris	F	+		scalaenum group						
1200	Callibaetis sp	MT	+		Rheotanytarsus sp		F	•	12		
11670	Procloeon viridoculare	MI	+	85800	Tanytarsus sp		F		4 +	۲	
12200	Isonychia sp	MI	1	85821	Tanytarsus glabrescens g	roup sp 7	F	•	16		
13521	Stenonema femoratum	F	1 +		Tanytarsus sepp		F	•	+		
17200	Caenis sp	F	16 +		Ferrissia sp		F	•	16 +		
21200	Calopteryx sp	F	+	97601	Corbicula fluminea		F	•	2 +	۲	
21300	Hetaerina sp	F	+								
22001	Coenagrionidae	Т	+	No. C	luantitative Taxa: 2	7	Total Ta	axa;	53		
22300	Argia sp	F	+	No. C	ualitative Taxa: 4	3		ICI:	40		
50301	Chimarra aterrima	MI	+	Numl	per of Organisms: 1	842	Qual E	PT:	12		
50315	Chimarra obscura	MI	12 +								
51001	Polycentropodidae		5								
52200	Cheumatopsyche sp	F	815 +								
52430	Ceratopsyche morosa group	MI	455 +								
52530	Hydropsyche depravata group	F	52 +								
3800	Hydroptila sp	F	36 +								
54160	Ochrotrichia sp	MI	2								
59970	Petrophila sp	MI	+								
8075	Psephenus herricki	MI	+								
88601	Ancyronyx variegata	F	2								
9400	Stenelmis sp	F	2 +								
71900	Tipula sp	F	1								
4100	Simulium sp	F	+								
7120	Ablabesmyia mallochi	F	+								
7130	Ablabesmyia rhamphe group	МТ	+								
7500	Conchapelopia sp	F	20								
77750	Hayesomyia senata or Thienemannimyia norena	F	87								
77800	Helopelopia sp	F	+								
78655	Procladius (Holotanypus) sp	MT	+								
30310	Cardiocladius obscurus	MI	+								
32100	Thienemanniella sp		4								
32730	Chironomus (C.) decorus group	Т	+								
32820	Cryptochironomus sp	F	+								
32824	Cryptochironomus ponderosus	F	+								
	Dicrotendipes neomodestus	F	+								

	Code:23-001 River: Mill		-1! - ·	hl-+ 000	700 - 15		I. Date:09/1			13.70
	D: MC104 Location			ly dst. SSO	700 outta	a//			nple	:
Taxa Code	Taxa	CWH Taxa		Qt./Ql.	Taxa Code	Таха		CWH Taxa	Tol.	Qt./QI.
01801	Turbellaria		F	52 +		scalaenum group				
3600	Oligochaeta		Т	1 +	84700	Stenochironomus sp		F	:	10
04685	Placobdella ornata		MT	+	85615	Rheotanytarsus pelluc	idus	МІ		10 +
04901	Erpobdellidae		MT	+	85625	Rheotanytarsus sp		F	;	142 +
06201	Hyalella azteca		F	+	85800	Tanytarsus sp		F	;	10
08601	Hydrachnidia		F	+	85821	Tanytarsus glabrescer	ns group sp 7	F	:	71
11120	Baetis flavistriga		F	2	96900	Ferrissia sp		F	:	19 +
11130	Baetis intercalaris		F	1042 +	98600	Sphaerium sp		F	:	1
11670	Procloeon viridoculare		MI	1 +						
12200	Isonychia sp		MI	1	No. C	Quantitative Taxa:	37	Total Ta	іха;	46
13521	Stenonema femoratum		F	34 +	No. G	Qualitative Taxa:	29	ı	ICI:	46
17200	Caenis sp		F	4 +						
21200	Calopteryx sp		F	1	INUITIL	per of Organisms:	3071	Qual E	PI:	9
22001	Coenagrionidae		Т	+						
22300	Argia sp		F	+						
50315	Chimarra obscura		MI	16 +						
52200	Cheumatopsyche sp		F	694 +						
52430	Ceratopsyche morosa group		MI	220 +						
52530	Hydropsyche depravata group		F	4 +						
53800	Hydroptila sp		F	195 +						
59970	Petrophila sp		MI	+						
55800	Berosus sp		MT	1						
69400	Stenelmis sp		F	2						
77500	Conchapelopia sp		F	10						
77750	Hayesomyia senata or Thienemannimyia norena		F	254 +						
78450	Nilotanypus fimbriatus		F	51						
30420	Cricotopus (C.) bicinctus		Т	+						
30430	Cricotopus (C.) tremulus group		MT	+						
31825	Rheocricotopus (Psilocricotopus) robacki		F	10						
32820	Cryptochironomus sp		F	20 +						
3000	Dicrotendipes sp		F	10						
33040	Dicrotendipes neomodestus		F	10 +						
33820	Microtendipes "caelum" (sensu Simpson & Bode, 1980)		MI	10						
34210	Paratendipes albimanus or P. duplicatus		F	31						
34300	Phaenopsectra obediens group		F	20						
34450	Polypedilum (Uresipedilum) flavum		F	41 +						
34460	Polypedilum (P.) fallax group		F	10 +						
34520	Polypedilum (Tripodura) halterale group		MT	10						
34540	Polypedilum (Tripodura)		F	51 +						

	Code: 23-001 River: <i>Mill</i>		5			4.0.00/ 1	0/2021 RM	
	D: MC02 Location	n: dst. W. Col	umbia Rd./	Koening	Park		Samp	le:
Taxa Code	Taxa	CWH Taxa Tol.	Qt./QI.	Taxa Code	Taxa		CWH Taxa To	ıl. Qt./Ql.
1801	Turbellaria	F	1 +	84155	Paralauterborniella nigr	ohalteralis	F	+
1900	Nemertea	F	4		Paratendipes albimanu		F	+
3600	Oligochaeta	Т	8 +		duplicatus			
4666	Helobdella papillata	МТ	+	84300	Phaenopsectra obedier	ns group	F	15
4685	Placobdella ornata	МТ	+	84450	Polypedilum (Uresipedi	lum) flavum	F	44 +
4901	Erpobdellidae	MT	+	84540	Polypedilum (Tripodura	1)	F	59 +
6201	Hyalella azteca	F	+		scalaenum group			
1120	Baetis flavistriga	F	13 +	84790	Tribelos fuscicorne		F	15
1130	Baetis intercalaris	F	101 +	85500	Paratanytarsus sp		F	7
2200	Isonychia sp	MI	+	85625	Rheotanytarsus sp		F	51 +
3521	Stenonema femoratum	F	35 +	85821	Tanytarsus glabrescens	s group sp 7	F	103
6700	Tricorythodes sp	MI	1 +	85840	Tanytarsus sepp		F	44
	Caenis sp	F	29 +	96900	Ferrissia sp		F	22 +
1200	Calopteryx sp	F	8 +	97601	Corbicula fluminea		F	13
	Argia sp	F	43 +					
0301	Chimarra aterrima	MI	+	No. C	uantitative Taxa:	39	Total Taxa	; 52
0315	Chimarra obscura	MI	1 +	No. C	ualitative Taxa:	35	ICI	: 46
2200	Cheumatopsyche sp	 F	205 +	Numl	per of Organisms:	1259	Qual EPT	: 13
2430	Ceratopsyche morosa group	MI	36 +		or or organismen	1200	Qual El 1	. 10
2530	Hydropsyche depravata group	F	2 +					
3800	Hydroptila sp	F	23 +					
9407	Nectopsyche candida	MI	+					
9970	Petrophila sp	MI	+					
8075	Psephenus herricki	MI	+					
	Ancyronyx variegata	 F	1					
	Stenelmis sp	F	. +					
	Tipula sp	F	1					
	Ablabesmyia mallochi	F	7					
7500	Conchapelopia sp	' F	7					
	Hayesomyia senata or	F	125 +					
	Thienemannimyia norena	_						
	Helopelopia sp	F _	44 +					
	Labrundinia pilosella	F _	15					
	Nilotanypus fimbriatus	F	7					
8750	Rheopelopia paramaculipennis	MI	22					
31231	Nanocladius (N.) crassicornus or N. (N.) "rectinervis"	F	7					
1825	Rheocricotopus (Psilocricotopus) robacki	F	15					
2730	Chironomus (C.) decorus group	Т	7 +					
2820	Cryptochironomus sp	F	15 +					
	Cryptochironomus eminentia	F	+					
	Dicrotendipes neomodestus	F	103					

	Code: 23-001 River: <i>Mill</i>			Coll. Date:09/15/2021 RM:							
	D: MC01 Location	: dst. E. Gal	braith Rd.					Sa	mple	:	
Taxa Code	Taxa	CWH Taxa Tol.	Qt./Ql.	Taxa Code	Ta	axa		CWH Taxa	Tol.	Qt./QI.	
01801	Turbellaria	F	37 +	85800	Tanytarsus sp			ı	=	18 +	
03000	Ectoprocta	F	+	85821	Tanytarsus glabres	scens	group sp 7	ı	=	160	
03600	Oligochaeta	Т	+	87540	Hemerodromia sp			ı	•	32	
04661	Helobdella elongata	МТ	+	89700	Limnophora sp			ı	=	+	
06201	Hyalella azteca	F	+	93900	Elimia sp			М	I	+	
08601	Hydrachnidia	F	48 +	96900	Ferrissia sp			ı	•	17 +	
11120	Baetis flavistriga	F	10 +	97601	Corbicula fluminea	a		ı	•	+	
11130	Baetis intercalaris	F	522 +								
11670	Procloeon viridoculare	МІ	+	No. C	uantitative Tax	a:	28	Total Ta	axa;	47	
13000	Leucrocuta sp	МІ	+		ualitative Taxa		38		ICI:	42	
13500	Maccaffertium sp	МІ	1								
	Stenonema femoratum	F	2 +	Numb	er of Organism	ns:	5501	Qual E	PT:	11	
	Tricorythodes sp	МІ	5								
17200	Caenis sp	F	19 +								
	Argia sp	F	+								
	Chimarra obscura	МІ	1 +								
	Cyrnellus fraternus	F	17								
	Cheumatopsyche sp	F	1932 +								
	Ceratopsyche morosa group	МІ	1298 +								
	Hydropsyche depravata group	F	30 +								
	Hydroptila sp	F	121 +								
		МІ	+								
	Ectopria sp	F	+								
	Psephenus herricki	МІ	+								
	Stenelmis sp	F	+								
	Ablabesmyia mallochi	F	+								
	Hayesomyia senata or	F	177 +								
	Thienemannimyia norena										
78100	Labrundinia sp	F	18 +								
78450	Nilotanypus fimbriatus	F	96								
30410	Cricotopus (C.) sp	F	53								
30420	Cricotopus (C.) bicinctus	Т	35 +								
30430	Cricotopus (C.) tremulus group	МТ	18								
31825	Rheocricotopus (Psilocricotopus) robacki	F	18								
32730	Chironomus (C.) decorus group	Т	+								
	Cryptochironomus sp	F	+								
	Dicrotendipes neomodestus	F	18 +								
	Polypedilum (Uresipedilum) flavum	F	638 +								
	Polypedilum (Tripodura) scalaenum group	F	+								
35500	Paratanytarsus sp	F	+								
35625	Rheotanytarsus sp	F	160 +								

River	Code: 23-001 River: <i>Mill</i>	Creek			Coll	. Date:09	/07/2021 RM:	10.50
Site I	D: MC80 Location	: dst. Antho	ny Wayne A	lve.			Sample	
Taxa Code	Taxa	CWH Taxa Tol.	Qt./Ql.	Taxa Code	Taxa		CWH Taxa Tol.	Qt./QI.
01801	Turbellaria	F	116 +	87540	Hemerodromia sp		F	2
	Nematomorpha	F	+		Elimia sp		MI	+
03000	Ectoprocta	F	+		Ferrissia sp		F	5 +
03600	Oligochaeta	Т	16 +	97601	Corbicula fluminea		F	21 +
06201	Hyalella azteca	F	+	98600	Sphaerium sp		F	+
08250	Orconectes (Procericambarus) rusticus	F	+	No C	Quantitative Taxa:	24	Total Taxa;	45
08601	Hydrachnidia	F	80 +					
11120	Baetis flavistriga	F	+		Qualitative Taxa:	37	ICI:	36
11130	Baetis intercalaris	F	913 +	Numb	per of Organisms:	6270	Qual EPT:	9
11670	Procloeon viridoculare	МІ	+					
12200	Isonychia sp	МІ	1					
13521	Stenonema femoratum	F	8 +					
22300	Argia sp	F	+					
49200	Climacia sp	F	+					
50315	Chimarra obscura	МІ	1 +					
52200	Cheumatopsyche sp	F	2893 +					
52430	Ceratopsyche morosa group	МІ	1052 +					
52530	Hydropsyche depravata group	F	196 +					
53800	Hydroptila sp	F	25 +					
59970	Petrophila sp	МІ	4 +					
69400	Stenelmis sp	F	1 +					
71900	Tipula sp	F	+					
74100	Simulium sp	F	1 +					
77120	Ablabesmyia mallochi	F	+					
77500	Conchapelopia sp	F	+					
77750	Hayesomyia senata or Thienemannimyia norena	F	118					
78450	Nilotanypus fimbriatus	F	16					
81231	Nanocladius (N.) crassicornus or N. (N.) "rectinervis"	F	9					
81240	Nanocladius (N.) distinctus	МТ	+					
82220	Tvetenia discoloripes group	MI	9					
82820	Cryptochironomus sp	F	+					
84450	Polypedilum (Uresipedilum) flavum	F	647 +					
84470	Polypedilum (P.) illinoense	Т	+					
84540	Polypedilum (Tripodura) scalaenum group	F	+					
84888	Xenochironomus xenolabis	F	+					
85500	Paratanytarsus sp	F	+					
85625	Rheotanytarsus sp	F	118					
85800	Tanytarsus sp	F	+					
85821	Tanytarsus glabrescens group sp 7	, F	18					
85840	Tanytarsus sepp	F	+					

River	Code: 23-001 River: <i>Mill</i>	Creek			Coll	. Date:09	/10/2021 RM:	9.24	
Site I	D: MC105 Location	: dst. Congr	ess Run				Sample:		
Taxa Code	Taxa	CWH Taxa Tol.	Qt./QI.	Taxa Code	Taxa		CWH Taxa Tol.	Qt./QI.	
01801	Turbellaria	F	84 +	87540 He	emerodromia sp		F	1	
	Ectoprocta	F	1	96900 Fe			F	3	
	Oligochaeta	т	+		rbicula fluminea		F	+	
06201	Hyalella azteca	F	1 +						
08250	Orconectes (Procericambarus) rusticus	F	+		antitative Taxa:	26	Total Taxa;	43	
08601	Hydrachnidia	F	+		alitative Taxa:	31	ICI:	38	
11120	Baetis flavistriga	F	10 +	Number	of Organisms:	5839	Qual EPT:	8	
11130	Baetis intercalaris	F	497 +						
12200	Isonychia sp	МІ	1						
13521	Stenonema femoratum	F	7 +						
16700	Tricorythodes sp	МІ	1						
17200	Caenis sp	F	+						
22300	Argia sp	F	2 +						
23600	Aeshna sp	MT	+						
50315	Chimarra obscura	МІ	+						
52200	Cheumatopsyche sp	F	3102 +						
52430	Ceratopsyche morosa group	МІ	707 +						
52530	Hydropsyche depravata group	F	47						
53800	Hydroptila sp	F	26 +						
54160	Ochrotrichia sp	MI	20						
68075	Psephenus herricki	MI	+						
68130	Helichus sp	F	+						
68901	Macronychus glabratus	F	1						
69400	Stenelmis sp	F	+						
74100	Simulium sp	F	+						
77120	Ablabesmyia mallochi	F	+						
77130	Ablabesmyia rhamphe group	MT	+						
77750	Hayesomyia senata or Thienemannimyia norena	F	75 +						
78655	Procladius (Holotanypus) sp	MT	+						
81240	Nanocladius (N.) distinctus	MT	11						
82730	Chironomus (C.) decorus group	Т	+						
83040	Dicrotendipes neomodestus	F	21 +						
83300	Glyptotendipes (G.) sp	MT	11						
84210	Paratendipes albimanus or P. duplicatus	F	+						
84450	Polypedilum (Uresipedilum) flavum	F	1017 +						
84540	Polypedilum (Tripodura) scalaenum group	F	11 +						
84700	Stenochironomus sp	F	11						
85625	Rheotanytarsus sp	F	96 +						
85800	Tanytarsus sp	F	+						
	Tanytarsus glabrescens group sp 7	F	75						

River	Code: 23-001 River: <i>Mill</i>	Creek			Coll	l. Date:09	/19/2021	RM:	8.68
Site I	D: MC79 Location	: dst. Este A	lve.				Sa	mple	• •
Taxa Code	Taxa	CWH Taxa Tol.	Qt./QI.	Taxa Code	Taxa		CWH Taxa	Tol.	Qt./Ql.
00401	. •	F	72 .	87501 Empididae			i		1
	Turbellaria	F	73 +	96900 Ferrissia sp	.:				17 +
	Fredericella sp	F	+	97601 Corbicula flun				=	1 +
03600	-	T	+	98600 Sphaerium sp)		ľ	=	+
04615	Actinobdella inequiannulata	MT	+	No Ougatitativa	Tovo	0.4	Total T	2401	45
04960		MT F	+	No. Quantitative		31	Total Ta		45
06201	Hyalella azteca	F	+ 40	No. Qualitative T	аха:	30		ICI:	40
08601	Hydrachnidia Reatic flovistrice		20 +	Number of Organ	nisms:	4801	Qual E	PT:	8
11120	Baetis flavistriga Baetis intercalaris	F	548 +						
11130		F							
12200	Isonychia sp Stenonema femoratum	MI	1						
13521		F	6 +						
13561	Maccaffertium pulchellum	MI	1						
21300	Hetaerina sp	F	9						
22001	Coenagrionidae	T	+						
22300	Argia sp	F	2 +						
51206	Cyrnellus fraternus	F	2 +						
52200	Cheumatopsyche sp	F	2569 +						
52430	Ceratopsyche morosa group	MI	374 +						
52530	Hydropsyche depravata group	F	73 +						
53800	Hydroptila sp	F	109 +						
59970	Petrophila sp	MI -	1 +						
	Stenelmis sp	F -	1 +						
	Ablabesmyia mallochi	F _	+						
	Conchapelopia sp	F _	11						
	Hayesomyia senata or Thienemannimyia norena	F	72						
78450	Nilotanypus fimbriatus	F	64						
78750	Rheopelopia paramaculipennis	MI	31						
80310	Cardiocladius obscurus	MI	+						
80370	Corynoneura lobata	F	8						
80410	Cricotopus (C.) sp	F	9						
80420	Cricotopus (C.) bicinctus	Т	9						
81630	Parakiefferiella sp	F	9						
82730	Chironomus (C.) decorus group	Т	+						
83040	Dicrotendipes neomodestus	F	+						
84300	Phaenopsectra obediens group	F	+						
84450	Polypedilum (Uresipedilum) flavum		619 +						
84540	Polypedilum (Tripodura) scalaenum group	F	17						
85625	Rheotanytarsus sp	F	87 +						
85821	Tanytarsus glabrescens group sp 7	, F	17						
85840	Tanytarsus sepp	F	+						

River: Mill Creek River Code:23-001 Coll. Date:09/15/2021 RM: 7.65 Site ID: MC77 Location: RR trestle Winton Place/dst. Center Hill Ave. Sample: Taxa **CWH CWH** Taxa Code Taxa Tol. Qt./QI. Taxa Taxa Tol. Qt./Ql. Taxa Code 84450 Polypedilum (Uresipedilum) flavum 01801 Turbellaria F 31 F 975 +03000 Ectoprocta F 84700 Stenochironomus sp F 37 +03040 Fredericella sp F 85625 Rheotanytarsus sp F 129 03360 Plumatella sp F 1 + F 85800 Tanytarsus sp 85821 Tanytarsus glabrescens group sp 7 03600 Oligochaeta Т F 129 + + 04615 Actinobdella inequiannulata MT 85840 Tanytarsus sepp F 04687 Placobdella parasitica 89716 Limnophora discreta МТ MT 04960 Erpobdella sp (= Mooreobdella) MT 95100 Physella sp Т + + 06201 Hyalella azteca F 96900 Ferrissia sp F 21 +F 136 F 08601 Hydrachnidia 97601 Corbicula fluminea F 5 + 98600 Sphaerium sp F 11120 Baetis flavistriga 11130 Baetis intercalaris F 944 +No. Quantitative Taxa: 11620 Paracloeodes minutus ΜI 26 Total Taxa; 53 + ΜI 1 12200 Isonychia sp No. Qualitative Taxa: 38 42 ICI: 13521 Stenonema femoratum F Number of Organisms: 7278 Qual EPT: 11 2 16700 Tricorythodes sp ΜI F 17200 Caenis sp 21300 Hetaerina sp F 2 + F 22300 Argia sp 50315 Chimarra obscura ΜI F 51206 Cyrnellus fraternus 51300 Neureclipsis sp ΜI 3982 + 52200 Cheumatopsyche sp F ΜI 442 + 52430 Ceratopsyche morosa group F 4 52530 Hydropsyche depravata group 53800 Hydroptila sp F 158 +4 + 59970 Petrophila sp ΜI 68075 Psephenus herricki ΜI 68601 Ancyronyx variegata F 69400 Stenelmis sp F F 77120 Ablabesmyia mallochi 77130 Ablabesmyia rhamphe group MT 77500 Conchapelopia sp F 18 77750 Hayesomyia senata or F 18 + Thienemannimyia norena 78450 Nilotanypus fimbriatus F 56 74 МΙ 78750 Rheopelopia paramaculipennis 80370 Corynoneura lobata F 16 80410 Cricotopus (C.) sp F 37 +Т 55 + 80420 Cricotopus (C.) bicinctus F 82820 Cryptochironomus sp 83040 Dicrotendipes neomodestus F 84300 Phaenopsectra obediens group F

Appendix Table C-2. Macroinvertebrate taxa list for sites from the Mill Creek study area in 2021.

River Code:23-001 River: Mi	II Creek			Coll. Date	:09/10/2021 RM:	6.80	
Site ID: MC09 Location	n: dst. CSX R	R Bridge			Sample:	∋ :	
Taxa Code Taxa	CWH Taxa Tol.	Qt./Ql.	Taxa Code	Taxa	CWH Taxa Tol. Qt	./QI.	
01801 Turbellaria	F	54 +					
03000 Ectoprocta	F	1					
03600 Oligochaeta	т	64					
06201 Hyalella azteca	F	+					
11130 Baetis intercalaris	F	339 +					
17200 Caenis sp	F	+					
21300 Hetaerina sp	F	+					
52200 Cheumatopsyche sp	F	1466 +					
52430 Ceratopsyche morosa group	МІ	47					
53800 Hydroptila sp	F	1 +					
59407 Nectopsyche candida	МІ	+					
69400 Stenelmis sp	F	180 +					
71900 Tipula sp	F	+					
77750 Hayesomyia senata or Thienemannimyia norena	F	719					
78200 Larsia sp	МТ	+					
30420 Cricotopus (C.) bicinctus	т	405 +					
31240 Nanocladius (N.) distinctus	MT	42 +					
32820 Cryptochironomus sp	F	42					
34450 Polypedilum (Uresipedilum) flavu	m F	1102 +					
34540 Polypedilum (Tripodura) scalaenum group	F	42					
34960 Pseudochironomus sp	F	42 +					
35625 Rheotanytarsus sp	F	270					
35821 Tanytarsus glabrescens group sp	7 F	42					
37501 Empididae	F	16					
No. Quantitative Taxa: 18	Total Taxa	; 24	_				
No. Qualitative Taxa: 15	ICI	24					

Number of Organisms: 4874

Qual EPT: 5

Appendix Table C-2. Macroinvertebrate taxa list for sites from the Mill Creek study area in 2021.

River	Code: 23-001 River: N	fill Creek			Coll. Date 09/10/2021 RM:			
Site I	D: MC07 Locat	ion: Dst. Spring	Grove Ave	./ RR bridge		Sample:		
Taxa Code	Taxa	CWH Taxa Tol.	Qt./Ql.	Taxa Code	Taxa	CWH Taxa Tol.	Qt./Ql.	
	Turbellaria	F _	87 +					
	Oligochaeta	T -	160					
06201	Hyalella azteca	F -	1 +					
11130	Baetis intercalaris	F	70 +					
12200	Isonychia sp	MI	1					
17200		F	16					
	Cheumatopsyche sp	F	446 +					
52430	Ceratopsyche morosa group	MI	1					
53800	Hydroptila sp	F	4 +					
69400	Stenelmis sp	F	19 +					
74100	Simulium sp	F	+					
74501	Ceratopogonidae	Т	+					
77130	Ablabesmyia rhamphe group	MT	40					
77750	Hayesomyia senata or Thienemannimyia norena	F	840					
80410	Cricotopus (C.) sp	F	40					
80420	Cricotopus (C.) bicinctus	т	1881 +					
80430	Cricotopus (C.) tremulus group	MT	40					
83040	Dicrotendipes neomodestus	F	80					
84300	Phaenopsectra obediens group	F	40					
84450	Polypedilum (Uresipedilum) flav	rum F	1040					
85625	Rheotanytarsus sp	F	160					
85821	Tanytarsus glabrescens group	sp 7 F	80					
97601	Corbicula fluminea	F	16 +					
No. C	Quantitative Taxa: 21	Total Taxa;	23	_				
No. C	Qualitative Taxa: 10	ICI:	16					
Numl	per of Organisms: 5062	Qual EPT:	3					

	Code: 23-001 River: <i>Mill</i>				Coll	. ∪ate:09/1	4/2021 RN		
Site I	D: MC75 Location	∶adj. Salway	Park				Samp	e:	
Taxa Code	Taxa	CWH Taxa Tol.	Qt./QI.	Taxa Code	Taxa		CWH Taxa To	ol. Qt./Ql.	
01801	Turbellaria	F	49 +	84790	Tribelos fuscicorne		F	46	
1900	Nemertea	F	+	84960	Pseudochironomus sp		F	23 +	
3040	Fredericella sp	F	1 +	85625	Rheotanytarsus sp		F	69 +	
03360	Plumatella sp	F	1 +	85800	Tanytarsus sp		F	23	
3600	Oligochaeta	Т	43 +	85821	Tanytarsus glabrescen	s group sp 7	F	231	
)4661	Helobdella elongata	MT	+	85840	Tanytarsus sepp		F	69	
06201	Hyalella azteca	F	36 +	95100	Physella sp		Т	+	
11130	Baetis intercalaris	F	+	96120	Menetus (Micromenetu	s) dilatatus	MT	8 +	
13400	Stenacron sp	F	+	97601	Corbicula fluminea		F	29 +	
13521	Stenonema femoratum	F	2 +	98600	Sphaerium sp		F	11	
16700	Tricorythodes sp	MI	2 +						
17200	Caenis sp	F	9	No. C	Quantitative Taxa:	34	Total Taxa	a; 50	
22300	Argia sp	F	15 +	No. C	Qualitative Taxa:	39	IC	l: 28	
27307	Epitheca (Epicordulia) princeps	MT	+		per of Organisms:				
14501	Corixidae	F	+	Num	Dei di Organisins.	2318	Qual EP1	Γ: 7	
51206	Cyrnellus fraternus	F	12 +						
52200	Cheumatopsyche sp	F	122 +						
53800	Hydroptila sp	F	86 +						
59970	Petrophila sp	MI	3						
8075	Psephenus herricki	MI	+						
69400	Stenelmis sp	F	9 +						
71900	Tipula sp	F	1						
72700	Anopheles sp	F	+						
74501	Ceratopogonidae	Т	8						
77120	Ablabesmyia mallochi	F	23 +						
77500	Conchapelopia sp	F	23						
77750	Hayesomyia senata or Thienemannimyia norena	F	370 +						
78655	Procladius (Holotanypus) sp	MT	+						
78750	Rheopelopia paramaculipennis	MI	162 +						
30420	Cricotopus (C.) bicinctus	Т	139 +						
32820	Cryptochironomus sp	F	+						
32824	Cryptochironomus ponderosus	F	+						
32826			+						
33040	Dicrotendipes neomodestus	F	208 +						
3050	Dicrotendipes lucifer	MT	69 +						
33300	Glyptotendipes (G.) sp	MT	+						
34450	Polypedilum (Uresipedilum) flavum	F	254						
34520	Polypedilum (Tripodura) halterale group	MT	+						
34540	Polypedilum (Tripodura) scalaenum group	F	162 +						
2/700	Stenochironomus sp	F	+						

River	Code: 23-001 River: <i>Mill</i>	Creek			Col	I. Date:09	/17/2021 F	RM:		4.60
Site I	D: MC74 Location	: ust. S. Ludi	low Ave.				San	nple	:	
Taxa		CWH		Taxa			CWH			
Code	Таха	Taxa Tol.	Qt./Ql.	Code	Taxa		Taxa	Tol.	Qt./	QI.
01801	Turbellaria	F	407 +							
03000	Ectoprocta	F	1	No. Quant	itative Taxa:	27	Total Ta	ха;	37	
03600	Oligochaeta	Т	49 +	No. Qualit	ative Taxa:	29	I	CI:	28	
04901	Erpobdellidae	MT	43		f Organisms:	3539	Qual EF		6	
06201	Hyalella azteca	F	+	Number of	i Organisins.	3339	Qual Li	١.	U	
11130	Baetis intercalaris	F	35 +							
11600	Paracloeodes fleeki	MI	+							
13521	Stenonema femoratum	F	+							
16700	Tricorythodes sp	MI	2							
22001	Coenagrionidae	Т	+							
22300	Argia sp	F	1 +							
50315	Chimarra obscura	MI	1							
52200	Cheumatopsyche sp	F	226 +							
52430	Ceratopsyche morosa group	MI	3 +							
53800	Hydroptila sp	F	152 +							
59970	Petrophila sp	MI	+							
69400	Stenelmis sp	F	8 +							
77120	Ablabesmyia mallochi	F	28 +							
77750	Hayesomyia senata or Thienemannimyia norena	F	166 +							
78450	Nilotanypus fimbriatus	F	16							
80410	Cricotopus (C.) sp	F	637 +							
80420	Cricotopus (C.) bicinctus	Т	55 +							
80430	Cricotopus (C.) tremulus group	МТ	111 +							
82730	Chironomus (C.) decorus group	Т	+							
82820	Cryptochironomus sp	F	28 +							
83040	Dicrotendipes neomodestus	F	166 +							
84300	Phaenopsectra obediens group	F	+							
84450	Polypedilum (Uresipedilum) flavum	F	914							
84540	Polypedilum (Tripodura) scalaenum group	F	+							
84790	Tribelos fuscicorne	F	28							
84960	Pseudochironomus sp	F	111 +							
85625	Rheotanytarsus sp	F	166							
85800	Tanytarsus sp	F	28 +							
85821	Tanytarsus glabrescens group sp 7	7 F	139 +							
	Elimia sp	МІ	+							
	Ferrissia sp	F	+							
97601	Corbicula fluminea	F	18 +							

	Code: 23-001 River: <i>Mill</i>			Coll. Date:09/17/2021 RM:					
Site I	D: MC73 Location	n: ust. Mill Cr	eek Rd.			Sample	e:		
Taxa Code	Taxa	CWH Taxa Tol.	Qt./Ql.	Taxa Code	Taxa	CWH Taxa Tol	. Qt./Ql.		
0401	Spongillidae	F	+	83300	Glyptotendipes (G.) sp	MT	41		
1320	Hydra sp	F	8	83900	Nilothauma sp	F	21		
	Turbellaria	F	96 +	84300	Phaenopsectra obediens group	F	21 +		
1900	Nemertea	F	+	84450			805 +		
	Plumatella sp	F	5 +	84520		MT	+		
3451	Urnatella gracilis	MI	1	01020	group				
3600	Oligochaeta	т	45	84540	Polypedilum (Tripodura)	F	41 +		
	Actinobdella inequiannulata	MT	+		scalaenum group				
6201	Hyalella azteca	 F	+	84700	Stenochironomus sp	F	+		
	•	F	2	84960	Pseudochironomus sp	F	21 +		
11120	Baetis flavistriga			85615	Rheotanytarsus pellucidus	МІ	41		
11130	Baetis intercalaris	F 	253 +	85625	Rheotanytarsus sp	F	454 +		
11620	Paracloeodes minutus	MI _	+	85821	Tanytarsus glabrescens group sp	7 F	83		
3521	Stenonema femoratum	F	9	87501	Empididae	F	+		
13561	Maccaffertium pulchellum	MI	8		Hemerodromia sp	F	55		
13570	Maccaffertium terminatum	MI	1	87601	Dolichopodidae	MT	+		
16700	Tricorythodes sp	MI	11	95100	Physella sp	т	+		
7200	Caenis sp	F	+	97601	Corbicula fluminea	· F	1 +		
21200	Calopteryx sp	F	+			F			
21300	Hetaerina sp	F	+	98600	Sphaerium sp	г	+		
22001	Coenagrionidae	T	+		N ('' 1'' T	T-1-1 T-			
22300	Argia sp	F	1 +		Quantitative Taxa: 40	Total Taxa;	58		
27400	Neurocordulia sp	F	1	No. C	Qualitative Taxa: 36	ICI:	44		
50315	Chimarra obscura	MI	19 +	Numl	per of Organisms: 5174	Qual EPT:	7		
51206	Cyrnellus fraternus	F	1						
52200	Cheumatopsyche sp	F	2441 +						
52430	Ceratopsyche morosa group	МІ	103 +						
3800	Hydroptila sp	F	70 +						
	Petrophila sp	МІ	3						
	Stenelmis sp	F	1 +						
	Ablabesmyia mallochi	F	+						
	Ablabesmyia rhamphe group	MT	+						
	Hayesomyia senata or Thienemannimyia norena	F	145						
8655	Procladius (Holotanypus) sp	МТ	+						
	Rheopelopia paramaculipennis	МІ	41 +						
	Corynoneura floridaensis	МІ	16						
	Cricotopus (C.) sp	 F	41 +						
	Cricotopus (C.) tremulus group	MT	103						
	Nanocladius (N.) crassicornus or N. (N.) "rectinervis"	F	41						
32730	Chironomus (C.) decorus group	Т	21 +						
	Dicrotendipes neomodestus	F	62						
	Dicrotendipes lucifer	MT	41						

	Code: 23-001 River: <i>Mill</i>			Coll. Date:09/17/2021 RM:					
	D: MC72 Location	: dst. Mill	Creek Rd.				Sample	:	
Taxa Code	Taxa	CWH Taxa To	ıl. Qt./Q	Taxa N. Code	Taxa		CWH Taxa Tol.	Qt./QI.	
01801	Turbellaria	F	818 +	85821	Tanytarsus glabrescer	ns group sp 7	F	34 +	
03000	Ectoprocta	F	: 1	87540	Hemerodromia sp		F	1	
03600	Oligochaeta	Т	. +	97601	Corbicula fluminea		F	1 +	
04901	Erpobdellidae	МТ	1 +	98600	Sphaerium sp		F	2	
06201	Hyalella azteca	F	+						
08250	Orconectes (Procericambarus) rusticus	F	+		Quantitative Taxa:	35	Total Taxa;	44	
11118	Plauditus dubius	M	l +		Qualitative Taxa:	23	ICI:	36	
11130	Baetis intercalaris	F	394 +	Numb	per of Organisms:	8113	Qual EPT:	7	
13000	Leucrocuta sp	M	1						
13521	Stenonema femoratum	F	+						
16700	Tricorythodes sp	M	1 4+						
	Calopteryx sp	F	: 1						
	Argia sp	F	22 +						
50315	Chimarra obscura	M	ı 68						
	Neureclipsis sp	M	ı 1						
	Cheumatopsyche sp	F	3704 +						
	Ceratopsyche morosa group	M	117 +						
	Hydropsyche depravata group	F	3						
	Hydroptila sp	F							
		M	ı 1						
		F	3 +						
	Simulium sp	F	115 +						
	Conchapelopia sp	F	103						
	Hayesomyia senata or Thienemannimyia norena	F	376						
78450	Nilotanypus fimbriatus	F	34						
78750	Rheopelopia paramaculipennis	M	ı 137						
	Thienemannimyia group	F	34						
80420	Cricotopus (C.) bicinctus	Т	34 +						
81231	Nanocladius (N.) crassicornus or N. (N.) "rectinervis"	F	68						
81240	Nanocladius (N.) distinctus	МТ	- 68						
	Parametriocnemus sp	X F							
	Chironomus (C.) decorus group	Т							
82822	Cryptochironomus eminentia	F	+						
83040	Dicrotendipes neomodestus	F	103						
83050	Dicrotendipes lucifer	МТ	- 68						
83300	Glyptotendipes (G.) sp	МТ	. +						
84450	Polypedilum (Uresipedilum) flavum	F	1574						
84540	Polypedilum (Tripodura) scalaenum group	F	+						
84960	Pseudochironomus sp	F	34 +						
85625	Rheotanytarsus sp	F	137						

	Code: 23-001 River: <i>Mill</i>					Coll	. Date:09/1	7/2021 RN		2.50
Site II	D: MC05 Location	n: dst. F	lopple	e St.				Samp	le:	
Taxa Code	Taxa	CWH Taxa		Qt./Ql.	Taxa Code	Taxa		CWH Taxa To	ol. Qt	./QI.
1801	Turbellaria		F	165 +	84450	Polypedilum (Uresiped	ilum) flavum	F	354	+
	Plumatella sp		F	2 +		Polypedilum (P.) illinoe		т	41	
	Urnatella gracilis		MI	1		Polypedilum (Tripodura		F		+
	Oligochaeta		т	64 +	0 10 10	scalaenum group	-/	·		
	Lirceus sp		MT	2	84700	Stenochironomus sp		F	41	
	Hyalella azteca		F	- 16 +	84960	Pseudochironomus sp		F	207	
	Baetis flavistriga		F	1	85625	Rheotanytarsus sp		F	332	
			F	114 +	85800	Tanytarsus sp		F	83	
	Stenonema femoratum		F	4	85814	Tanytarsus glabrescen	s group	F	207	
	Tricorythodes sp		MI	17	87540	Hemerodromia sp		F	2	
	Caenis sp		F	1	95100	Physella sp		т	211	+
	Hetaerina sp		F	+	96120	Menetus (Micromenetu	s) dilatatus	MT	48	
	Coenagrionidae		т	+	97601	Corbicula fluminea		F		+
	Argia sp		F	20 +	98600	Sphaerium sp		F		+
	Macromia sp		МІ	1 +						
	Chimarra obscura		МІ	17 +	No. C	Quantitative Taxa:	42	Total Taxa	; 54	
	Cyrnellus fraternus		F	1	No. G	Qualitative Taxa:	28	IC	: 36	
	Cheumatopsyche sp		F	2532 +		per of Organisms:				
	Ceratopsyche morosa group		МІ	1	INUITIE	bei di Organisms.	6814	Qual EPT	: 5	
	Hydropsyche depravata group		F	+						
	Hydroptila sp		F	325 +						
	Petrophila sp		МІ	18						
	Helichus sp		F	+						
	Stenelmis sp		F	+						
	Simulium sp		F	+						
	Conchapelopia sp		F	414						
	Hayesomyia senata or		F	414						
	Thienemannimyia norena									
8350	Meropelopia sp	X	F	41						
78650	Procladius sp		MT	+						
8750	Rheopelopia paramaculipennis		MI	124						
30310	Cardiocladius obscurus		MI	41						
30420	Cricotopus (C.) bicinctus		Т	166 +						
80430	Cricotopus (C.) tremulus group		MT	124						
31231	Nanocladius (N.) crassicornus or N. (N.) "rectinervis"		F	83						
32730	Chironomus (C.) decorus group		Т	+						
32820	Cryptochironomus sp		F	+						
3040	Dicrotendipes neomodestus		F	207 +						
3050	Dicrotendipes lucifer		MT	207 +						
3300	Glyptotendipes (G.) sp		MT	41						
34040	Parachironomus frequens		F	83						
34300	Phaenopsectra obediens group		F	41						

River	Code: 23-001 River: <i>Mill</i>	Creek			Col	l. Date:09	/17/2021	RM:	1.6
Site I	D: MC03 Location	: dst. Lick R	ın CSO				Saı	mple	:
Taxa		CWH		Taxa			CWH		
Code	Taxa	Taxa Tol.	Qt./QI.	Code	Taxa		Taxa	Tol.	Qt./QI.
)1801	Turbellaria	F	67 +						
	Plumatella sp	F	1 +	No. Quantit	ative Taxa:	33	Total Ta	axa;	38
3600	Oligochaeta	Т	258 +	No. Qualita	tive Taxa:	16		ICI:	20
)4601	Glossiphoniidae	MT	+		Organisms:	2029	Qual E		2
)4901	Erpobdellidae	MT	1	Number of	Organisms.	2029	Qual	PI.	2
6201	Hyalella azteca	F	3 +						
3500	Maccaffertium sp	MI	1						
3521	Stenonema femoratum	F	12 +						
7200	Caenis sp	F	18						
22001	Coenagrionidae	Т	+						
22300	Argia sp	F	3 +						
28500	Libellula sp	MT	+						
12700	Belostoma sp	Т	+						
1206	Cyrnellus fraternus	F	19						
52200	Cheumatopsyche sp	F	125 +						
3800	Hydroptila sp	F	35						
8708	Dubiraphia vittata group	F	1						
9400	Stenelmis sp	F	16						
7120	Ablabesmyia mallochi	F	131						
7500	Conchapelopia sp	F	113						
7750	Hayesomyia senata or Thienemannimyia norena	F	150						
30420	Cricotopus (C.) bicinctus	Т	19						
31231	Nanocladius (N.) crassicornus or N. (N.) "rectinervis"	F	19						
32730	Chironomus (C.) decorus group	Т	19 +						
3040	Dicrotendipes neomodestus	F	375 +						
3050	Dicrotendipes lucifer	МТ	244						
3300	Glyptotendipes (G.) sp	MT	56						
34450	Polypedilum (Uresipedilum) flavum	F	75						
34470	Polypedilum (P.) illinoense	Т	19						
34540	Polypedilum (Tripodura) scalaenum group	F	19 +						
4700	Stenochironomus sp	F	19						
34960	Pseudochironomus sp	F	38						
	Rheotanytarsus sp	F	19						
	Tanytarsus sp	F	19						
35821	Tanytarsus glabrescens group sp 7	7 F	75						
5100		Т	52 +						
6801		F	8						
7601		F	+						

Appendix Table C-2. Macroinvertebrate taxa list for sites from the Mill Creek study area in 2021.

River Code:23-004 River: Wes	t Fork Mill Cre		Coll. Date:	09/07/2021 RM: 0.2 0	
Site ID: MC45 Location	: Elliot Ave.				Sample:
Taxa	CWH		Taxa		CWH
Code Taxa	Taxa Tol.	Qt./QI.	Code	Taxa	Taxa Tol. Qt./Ql.
01801 Turbellaria	F	8 +			
03600 Oligochaeta	Т	+			
04685 Placobdella ornata	MT	+			
06201 Hyalella azteca	F	1			
08200 Orconectes sp	F	+			
11120 Baetis flavistriga	F	+			
11130 Baetis intercalaris	F	227 +			
13400 Stenacron sp	F	+			
13521 Stenonema femoratum	F	56 +			
17200 Caenis sp	F	+			
22300 Argia sp	F	+			
50315 Chimarra obscura	MI	+			
52200 Cheumatopsyche sp	F	9 +			
52430 Ceratopsyche morosa group	MI	+			
68075 Psephenus herricki	MI	+			
69400 Stenelmis sp	F	+			
74100 Simulium sp	F	+			
77500 Conchapelopia sp	F	4			
77750 Hayesomyia senata or Thienemannimyia norena	F	5			
78450 Nilotanypus fimbriatus	F	3			
81825 Rheocricotopus (Psilocricotopus) robacki	F	1			
82141 Thienemanniella xena	F	2			
84210 Paratendipes albimanus or P. duplicatus	F	+			
84450 Polypedilum (Uresipedilum) flavum	F	40			
84470 Polypedilum (P.) illinoense	Т	4 +			
85625 Rheotanytarsus sp	F	9			
85800 Tanytarsus sp	F	9			
96900 Ferrissia sp	F	18 +			
97601 Corbicula fluminea	F	+			
No. Quantitative Taxa: 15	Total Taxa;	29	_		
No. Qualitative Taxa: 20	ICI:	30			
Number of Organisms: 396	Qual EPT:	8			

		t Fork Mill Cr		. 14:11 0		. Date: <i>09/1</i>	Commiss			2.0	
	D: MC18 Location	i: 'ust. Butler	Co. Uppei	Mill Cree	k WWTP/Ust. Aller	n Kd.	Sar	<u>:</u>			
Taxa Code	Таха	CWH Taxa Tol.	Qt./QI.	Taxa Code	Taxa		CWH Taxa	Tol.	Qt./Q	λl.	
1801	Turbellaria	F	5 +	83840	Microtendipes pedellus	s group	F		23		
1900	Nemertea	F	+	84210	Paratendipes albimanu	ıs or P.	F		152 +		
3600	Oligochaeta	Т	24 +		duplicatus						
)4964	Erpobdella microstoma	МТ	+	84300	Phaenopsectra obedie	ns group	F		11		
5900	Lirceus sp	МТ	2 +	84450	Polypedilum (Uresiped	ilum) flavum	F		28 +		
6904	Synurella dentata	MT	+	84460	Polypedilum (P.) fallax	group	F		11		
8250	Orconectes (Procericambarus) rusticus	F	1 +	84520	Polypedilum (Tripodura group	a) halterale	МТ		+		
1130	Baetis intercalaris	F	36 +	84540	Polypedilum (Tripodura	a)	F		17		
1670	Procloeon viridoculare	MI	+	0.5000	scalaenum group		_		44 .		
3521	Stenonema femoratum	F	269 +		Cladotanytarsus manc	• .	F		11 +		
7200	Caenis sp	F	78 +	85501	Paratanytarsus longisti	iius	х мі		6 +		
21200	Calopteryx sp	F	+	85625	Rheotanytarsus sp		F		51 +		
22001	Coenagrionidae	Т	+	85800	Tanytarsus sp		F		+		
2300	Argia sp	F	4 +	85818		•	F		+		
0301	Chimarra aterrima	MI	+	85821	Tanytarsus glabrescen	s group sp 7	F		17		
0315	Chimarra obscura	MI	+		Tanytarsus sepp		F		6 +		
2200	Cheumatopsyche sp	F	24 +		Physella sp		Т –		+		
2430	Ceratopsyche morosa group	MI	19 +	97601	Corbicula fluminea		F		+		
2530	Hydropsyche depravata group	F	+	98200	Pisidium sp		МТ		4		
3501	Hydroptilidae	F	+		·					_	
8505	Helicopsyche borealis	МІ	+	No. C	Quantitative Taxa:	29	Total Ta	ха;	57		
9720	Triaenodes ignitus	МІ	+	No. C	Qualitative Taxa:	46	ı	CI:	42		
0900	Peltodytes sp	MT	+	Numl	per of Organisms:	1012	Qual E	PT:	12		
3900	Laccophilus sp	Т	+								
8025	Ectopria sp	F	+								
8075	Psephenus herricki	МІ	+								
8708	Dubiraphia vittata group	F	+								
9400	Stenelmis sp	F	14 +								
2700	Anopheles sp	F	+								
7120	Ablabesmyia mallochi	F	+								
77750	Hayesomyia senata or Thienemannimyia norena	F	11								
7800	Helopelopia sp	F	+								
'8140	Labrundinia pilosella	F	22								
8450	Nilotanypus fimbriatus	F	4								
0370	Corynoneura lobata	F	112								
31231	Nanocladius (N.) crassicornus or N. (N.) "rectinervis"	F	11								
32141	Thienemanniella xena	F	+								
3003	Dicrotendipes fumidus	F	+								
3040	Dicrotendipes neomodestus	F	39 +								
33820	Microtendipes "caelum" (sensu Simpson & Bode, 1980)	MI	+								

		t Fork Mill C		Mill Crook MANATE			/14/2021 F		1.0
	D: MC15 Location		Co. Upper i	Mill Creek WWTP				nple:	
Taxa Code	Taxa	CWH Taxa Tol.	Qt./QI.	Taxa Code	Taxa		CWH Taxa	Tol.	Qt./QI.
)1418	Craspedacusta sowerbyi	F	33						
1801	Turbellaria	F	207 +	No. Quantitat	ive Taxa:	28	Total Ta	ха;	41
1900	Nemertea	F	480 +	No. Qualitativ	e Taxa	29	ı	CI:	30
3000	Ectoprocta	F	1						
3600	Oligochaeta	Т	2528	Number of Or	ganisms:	10174	Qual E	PI:	7
)4964	Erpobdella microstoma	МТ	+						
06201	Hyalella azteca	F	2070 +						
7701	Cambaridae		1						
11130	Baetis intercalaris	F	+						
3521	Stenonema femoratum	F	+						
7200	Caenis sp	F	41 +						
21200	Calopteryx sp	F	+						
22001	Coenagrionidae	Т	+						
22300	Argia sp	F	70 +						
51206	Cyrnellus fraternus	F	104 +						
52200	Cheumatopsyche sp	F	180						
52430	Ceratopsyche morosa group	МІ	40						
52530	Hydropsyche depravata group	F	205 +						
3800	Hydroptila sp	F	1 +						
59300	Mystacides sp	МІ	+						
55800	Berosus sp	МТ	+						
9400	Stenelmis sp	F	+						
7500	Conchapelopia sp	F	41						
77740	Hayesomyia senata	F	327						
7800	Helopelopia sp	F	123						
30420	Cricotopus (C.) bicinctus	Т	82 +						
31240	Nanocladius (N.) distinctus	МТ	286 +						
32730	Chironomus (C.) decorus group	Т	+						
3040	Dicrotendipes neomodestus	F	204 +						
3158	Endochironomus nigricans	МТ	+						
33300	Glyptotendipes (G.) sp	МТ	164 +						
34210	Paratendipes albimanus or P. duplicatus	F	41						
34450	Polypedilum (Uresipedilum) flavum	F	1636 +						
	Polypedilum (P.) illinoense	т	164 +						
34540	Polypedilum (Tripodura) scalaenum group	F	+						
34700	Stenochironomus sp	F	+						
	Pseudochironomus sp	F	41						
	Rheotanytarsus sp	F	900 +						
	Tanytarsus glabrescens group sp 7	, F	41 +						
	Hemerodromia sp	F	163						
7601	Corbicula fluminea	F	+						

River	Code: 23-006 River: <i>Eas</i>	t Fork Mill Cı	reek			Coll	. Date 09	/14/2021 RM:	0.72
Site I	D: MC14 Location	: dst. Cresce	entville	Rd.				Sample	
Taxa		CWH			Taxa			CWH	
Code	Taxa	Taxa Tol.	Qt./0	QI.	Code	Taxa		Taxa Tol.	Qt./Ql.
01801	Turbellaria	F	35 +	+					
03600	Oligochaeta	Т	192		No. Quan	titative Taxa:	24	Total Taxa;	38
05900	Lirceus sp	MT	+	+	No. Qualit	tative Taxa:	30	ICI:	38
06201	Hyalella azteca	F	+	+		f Organisms:	7513	Qual EPT:	7
07800	Cambarus sp		+	+	ramber o	organisms.	7515	Qual El 1.	,
08601	Hydrachnidia	F	4	+					
11130	Baetis intercalaris	F	16 +	+					
12200	Isonychia sp	MI	+	+					
13521	Stenonema femoratum	F	20 +	+					
17200	Caenis sp	F	32 +	+					
21200	Calopteryx sp	F	+	+					
22001	Coenagrionidae	Т	+	+					
22300	Argia sp	F	70 +	+					
51206	Cyrnellus fraternus	F	233 +	+					
52200	Cheumatopsyche sp	F	1217 +	+					
52430	Ceratopsyche morosa group	MI	55						
52530	Hydropsyche depravata group	F	410 +	+					
53501	Hydroptilidae	F	4						
68708	Dubiraphia vittata group	F	1 +	+					
69400	Stenelmis sp	F	+	+					
77750	Hayesomyia senata or Thienemannimyia norena	F	144						
78702	Psectrotanypus dyari	VT	+	+					
80420	Cricotopus (C.) bicinctus	Т	48 +	+					
81200	Nanocladius sp	F	48						
82730	Chironomus (C.) decorus group	Т	+	+					
82824	Cryptochironomus ponderosus	F	+	+					
83040	Dicrotendipes neomodestus	F	528 +	+					
83300	Glyptotendipes (G.) sp	MT	432 +	+					
84450	Polypedilum (Uresipedilum) flavum	r F	2306 +	+					
84470	Polypedilum (P.) illinoense	Т	144						
85625	Rheotanytarsus sp	F	1441 +	+					
85821	Tanytarsus glabrescens group sp	7 F	96 +	+					
85840	Tanytarsus sepp	F	+	+					
87540	Hemerodromia sp	F	37						
95100	Physella sp	Т	3 +	+					
96801	Ancylidae	F	1						
97601	Corbicula fluminea	F	+	+					
98001	Pisidiidae		+	+					

		t Fork Mill Cr		<i>c</i> ,		. 2410,00/1	3/2021 RM	
	D: MC16 Location	n: dst. Fada F	Rd./ust. Con	ifluence l	Mill Creek		Sampl	e:
Taxa Code	Таха	CWH Taxa Tol.	Qt./Ql.	Taxa Code	Taxa		CWH Taxa Tol	. Qt./Ql.
)1801	Turbellaria	F	53 +	83300	Glyptotendipes (G.) sp		МТ	96
1900	Nemertea	F	40 +	84450	Polypedilum (Uresiped	ilum) flavum	F	546 +
3600	Oligochaeta	Т	832	84470	Polypedilum (P.) illinoe	nse	т	32
)4915	Erpobdella parva		+	84540	Polypedilum (Tripodura	a)	F	+
06201	Hyalella azteca	F	5	0.0.0	scalaenum group	,		
08601	Hydrachnidia	F	32	84700	Stenochironomus sp		F	+
11130	Baetis intercalaris	F	+	84960	Pseudochironomus sp		F	+
1670	Procloeon viridoculare	MI	+	84960	Pseudochironomus sp		F	32
13521	Stenonema femoratum	F	2 +	85230	Cladotanytarsus manc	us group	F	+
7200	Caenis sp	F	33	85500	Paratanytarsus sp		F	32
21200	Calopteryx sp	F	+	85625	Rheotanytarsus sp		F	1189 +
22001	Coenagrionidae	т	1 +	85800	Tanytarsus sp		F	64
	Argia sp	F	6 +	85821	Tanytarsus glabrescen	s group sp 7	F	611
51206	Cyrnellus fraternus	F	132	85840	Tanytarsus sepp		F	32
52200	Cheumatopsyche sp	F	616 +	87540	Hemerodromia sp		F	24
52430	Ceratopsyche morosa group	MI	20	94400	Fossaria sp		MT	+
52530	Hydropsyche depravata group	 F	115 +	95100	Physella sp		Т	+
3800	Hydroptila sp	F	144 +	97601	Corbicula fluminea		F	1 +
60900	Peltodytes sp	MT	+					
64050	Liodessus sp	MT	+	No. C	Quantitative Taxa:	34	Total Taxa;	57
55800	Berosus sp	MT	+	No C	Qualitative Taxa:	37	ICI:	36
8075	Psephenus herricki	MI	+					
9400	Stenelmis sp	 F	+	Numi	per of Organisms:	5744	Qual EPT:	6
	Ablabesmyia mallochi	F	+					
_	Hayesomyia senata or Thienemannimyia norena	F	129 +					
7800	Helopelopia sp	F	+					
78450	Nilotanypus fimbriatus	F	21					
	Procladius (Holotanypus) sp	МТ	+					
78750	Rheopelopia paramaculipennis	MI	+					
30360	Corynoneura floridaensis	MI	8					
30420	Cricotopus (C.) bicinctus	Т	96 +					
31231		F	32					
31240	Nanocladius (N.) distinctus	MT	64					
31825	Rheocricotopus (Psilocricotopus) robacki	F	+					
32121	Thienemanniella lobapodema	F	29					
32141	Thienemanniella xena	F	+					
32730	Chironomus (C.) decorus group	Т	+					
	Cryptochironomus ponderosus	F	+					
	Dicrotendipes neomodestus	F	643 +					
	Dicrotendipes lucifer	МТ	32					

Appendix Table C-2. Macroinvertebrate taxa list for sites from the Mill Creek study area in 2021.

River	Code: 23-009 Ri	iver: Coo	pers Creek (Ro	ossmo	yne Creek RM 14.05)	Coll. Date	:09/17/2021 RM:	3.57
Site I	D: MC111	Location	: Bechtold Par	k, app	orox 350-ft below origin		Sample:	
Taxa			CWH		Taxa		CWH	
Code	Taxa		Taxa Tol.	Qt./C	N. Code	Taxa	Taxa Tol.	Qt./QI.
01801	Turbellaria		F	+				
03600	Oligochaeta		Т	+				
21200	Calopteryx sp		F	+				
72700	Anopheles sp		F	+				
72900	Culex sp		Т	+				
77500	Conchapelopia sp		F	+				
78200	Larsia sp		MT	+				
78401	Natarsia species A (sen 1978)	su Roback,	т	+				
82730	Chironomus (C.) decoru	ıs group	Т	+				
84210	Paratendipes albimanus duplicatus	s or P.	F	+				
95100	Physella sp		Т	+				
No. C	Quantitative Taxa:	0	Total Taxa;	11				
No. C	Qualitative Taxa:	11	ICI:					
Numb	per of Organisms:	0	Qual EPT:	0				

Appendix Table C-2. Macroinvertebrate taxa list for sites from the Mill Creek study area in 2021.

River Code:23-009 River: Cod	opers Creek (Ro	ossmoyne	Creek RM 14.05)	Coll. Date	09/13/2021 RM:	3.42
Site ID: MC112 Location	n: <i>Approx 300-</i>	ft above P	lainfield Road		Sample:	
Taxa Code Taxa	CWH Taxa Tol.	Qt./QI.	Taxa Code	Taxa	CWH Taxa Tol. C	t./Ql.
01801 Turbellaria	F	+				
03600 Oligochaeta	т	+				
04660 Helobdella sp	МТ	+				
04666 Helobdella papillata	MT	+				
07800 Cambarus sp		+				
11120 Baetis flavistriga	F	+				
21001 Calopterygidae	F	+				
50301 Chimarra aterrima	МІ	+				
50315 Chimarra obscura	МІ	+				
52200 Cheumatopsyche sp	F	+				
71900 Tipula sp	F	+				
77750 Hayesomyia senata or Thienemannimyia norena	F	+				
84300 Phaenopsectra obediens group	F	+				
84302 Phaenopsectra punctipes	F	+				
84450 Polypedilum (Uresipedilum) flavum	n F	+				
95100 Physella sp	т	+				
96900 Ferrissia sp	F	+				
No. Quantitative Taxa: 0	Total Taxa;	17	_			
No. Qualitative Taxa: 17	ICI:					
Number of Organisms: 0	Qual EPT:	4				

Appendix Table C-2. Macroinvertebrate taxa list for sites from the Mill Creek study area in 2021.

River Code: 23-009	River: Coo	pers Creek (Ro	ssmoyne	Creek RM 14.05)	Coll. Date	:09/26/2021 RM: 2.8		
Site ID: MC113	Location	: Below Weck	ow Avenu	re	Sample:			
Taxa Code Taxa		CWH Taxa Tol.	Qt./Ql.	Taxa Code	Taxa	CWH Taxa Tol. Qt./Ql.		
01801 Turbellaria		F	+					
03600 Oligochaeta		Т	+					
07820 Cambarus (Cambar	us) sp A	MT	+					
72700 Anopheles sp		F	+					
72900 Culex sp		т	+					
84210 Paratendipes albima duplicatus	anus or P.	F	+					
96120 Menetus (Micromen	etus) dilatatus	МТ	+					
No. Quantitative Taxa	: 0	Total Taxa;	7					
No. Qualitative Taxa:	7	ICI:						
Number of Organisms	s: 0	Qual EPT:	0					

Appendix Table C-2. Macroinvertebrate taxa list for sites from the Mill Creek study area in 2021.

River Code: 23-009	River: c	Coopers Creek (Ro	ossmoyne	Creek RM 14.05)	Coll. Date	:09/07/2021 RM: 2.59		
Site ID: MC32	Locati	ion: <i>Approx 1,50</i> 0	O-ft above	RT 126 culvert	Sample:			
Taxa Code Taxa		CWH Taxa Tol.	Qt./Ql.	Taxa Code	Taxa	CWH Taxa Tol. Qt./Ql.		
01801 Turbellaria		F	+					
03600 Oligochaeta		Т	+					
06800 Gammarus sp		F	+					
69400 Stenelmis sp		F	+					
83040 Dicrotendipes neom	odestus	F	+					
No. Quantitative Taxa	: 0	Total Taxa;	5	_				
No. Qualitative Taxa:	5	ICI:						
Number of Organisms	: 0	Qual EPT:	0					

Appendix Table C-2. Macroinvertebrate taxa list for sites from the Mill Creek study area in 2021.

River	Code: 23-009 River: (Coopers Creek (R	ossmoyne	Creek RM 14.05)	Coll. Date	:08/24/2021 RM:	2.13
Site I	D: MC28 Locat	ion: <i>Approx 450</i> -	ft below R	T 126 culvert		Sample:	
Taxa Code	Taxa	CWH Taxa Tol.	Qt./Ql.	Taxa Code	Taxa	CWH Taxa Tol. Qt./C	λl.
01801	Turbellaria	F	+				
03600	Oligochaeta	т	+				
06501	Gammaridae		+				
07800	Cambarus sp		+				
08250	Orconectes (Procericambarus) rusticus	F	+				
08601	Hydrachnidia	F	+				
11120	Baetis flavistriga	F	+				
11130	Baetis intercalaris	F	+				
13521	Stenonema femoratum	F	+				
17200	Caenis sp	F	+				
21200	Calopteryx sp	F	+				
50301	Chimarra aterrima	MI	+				
52200	Cheumatopsyche sp	F	+				
52530	Hydropsyche depravata group	F	+				
69400	Stenelmis sp	F	+				
71900	Tipula sp	F	+				
74100	Simulium sp	F	+				
77750	Hayesomyia senata or Thienemannimyia norena	F	+				
77800	Helopelopia sp	F	+				
78655	Procladius (Holotanypus) sp	МТ	+				
80410	Cricotopus (C.) sp	F	+				
81825	Rheocricotopus (Psilocricotopu robacki	s) F	+				
82820	Cryptochironomus sp	F	+				
84210	Paratendipes albimanus or P. duplicatus	F	+				
84300	Phaenopsectra obediens group	F	+				
84450	Polypedilum (Uresipedilum) fla	vum F	+				
84540	Polypedilum (Tripodura) scalaenum group	F	+				
No. C	Quantitative Taxa: 0	Total Taxa;	27	_			
No. C	Qualitative Taxa: 27	ICI:	MG				
Numl	ber of Organisms: 0	Qual EPT:	7				

Appendix Table C-2. Macroinvertebrate taxa list for sites from the Mill Creek study area in 2021.

River	Code: 23-009 River:	Coopers Creek (Re	ossmoyne	Creek RM 14.05)	Coll. Date	e:09/27/2021 RM:	1.58
Site I	D: MC118 Loca	tion: end of N. Ka	thwood Ci	ir.		Sample:	
Taxa		CWH		Taxa		CWH	
Code	Taxa	Taxa Tol.	Qt./QI.	Code	Taxa	Taxa Tol.	Qt./QI.
01801	Turbellaria	F	+				
03600	Oligochaeta	т	+				
04901	Erpobdellidae	МТ	+				
05900	Lirceus sp	MT	+				
08200	Orconectes sp	F	+				
11120	Baetis flavistriga	F	+				
11130	Baetis intercalaris	F	+				
13521	Stenonema femoratum	F	+				
17200	Caenis sp	F	+				
21200	Calopteryx sp	F	+				
22300	Argia sp	F	+				
50301	Chimarra aterrima	МІ	+				
50315	Chimarra obscura	МІ	+				
51050	Cernotina sp	МІ	+				
52200	Cheumatopsyche sp	F	+				
52530	Hydropsyche depravata group	F	+				
53501	Hydroptilidae	F	+				
59970	Petrophila sp	МІ	+				
68075	Psephenus herricki	MI	+				
71900	Tipula sp	F	+				
74100	Simulium sp	F	+				
77120	Ablabesmyia mallochi	F	+				
81650	Parametriocnemus sp	X F	+				
82730	Chironomus (C.) decorus grou	р Т	+				
82820	Cryptochironomus sp	F	+				
83040	Dicrotendipes neomodestus	F	+				
83820	Microtendipes "caelum" (sense Simpson & Bode, 1980)	u M I	+				
84210	Paratendipes albimanus or P. duplicatus	F	+				
84300	Phaenopsectra obediens grou	p F	+				
No. C	Quantitative Taxa: 0	Total Taxa;	29	_			
No. C	Qualitative Taxa: 29	ICI:	G				
	ber of Organisms: 0	Qual EPT:	10				

Appendix Table C-2. Macroinvertebrate taxa list for sites from the Mill Creek study area in 2021.

River	Code: 23-009 River:	Coopers Creek (Re	ossmoyne	Creek RM 14.05)	Coll. Date	:09/27/2021 RM	0.4
Site I	D: MC119 Loca	tion: <i>ust. Readin</i> g	Rd.			Sampl	e:
Taxa Code	Taxa	CWH Taxa Tol.	Qt./Ql.	Taxa Code	Taxa	CWH Taxa To	l. Qt./Ql.
01801	Turbellaria	F	+				
3600	Oligochaeta	т	+				
05900	Lirceus sp	MT	+				
08250	Orconectes (Procericambarus rusticus) F	+				
11120	Baetis flavistriga	F	+				
11130	Baetis intercalaris	F	+				
13521	Stenonema femoratum	F	+				
17200	Caenis sp	F	+				
21200	Calopteryx sp	F	+				
22001	Coenagrionidae	т	+				
22300	Argia sp	F	+				
50301	Chimarra aterrima	МІ	+				
50315	Chimarra obscura	МІ	+				
52200	Cheumatopsyche sp	F	+				
52430	Ceratopsyche morosa group	МІ	+				
52530	Hydropsyche depravata group	F	+				
53501	Hydroptilidae	F	+				
59970	Petrophila sp	МІ	+				
8075	Psephenus herricki	МІ	+				
8130	Helichus sp	F	+				
69400	Stenelmis sp	F	+				
71900	Tipula sp	F	+				
74100	Simulium sp	F	+				
7120	Ablabesmyia mallochi	F	+				
7800	Helopelopia sp	F	+				
33840	Microtendipes pedellus group	F	+				
34210	Paratendipes albimanus or P. duplicatus	F	+				
34300	Phaenopsectra obediens grou	p F	+				
35800	Tanytarsus sp	F	+				
No. C	Quantitative Taxa: 0	Total Taxa;	29	_			
No. C	Qualitative Taxa: 29	ICI:	G				
Numl	ber of Organisms: 0	Qual EPT:	10				

Appendix Table C-2. Macroinvertebrate taxa list for sites from the Mill Creek study area in 2021.

River Code	e: 23-028 River: <i>Trib</i>	to West For	k Creek @ R	M 1.24	Coll. Date	09/03/2021 RM:	1.40
Site ID: MC	C97 Location	: Kirby Rd.				Sample:	
Taxa		CWH		Taxa		CWH	
Code	Taxa	Taxa Tol.	Qt./QI.	Code	Taxa	Taxa Tol.	Qt./Ql.
03600 Oligo	chaeta	т	+				
04680 Placo		MT	+				
05900 Lirce	us sp	MT	+				
07800 Camb	parus sp		+				
11120 Baetis	s flavistriga	F	+				
11130 Baetis	s intercalaris	F	+				
13521 Stend	onema femoratum	F	+				
21200 Calop	oteryx sp	F	+				
45300 Sigara	a sp	MT	+				
50301 Chima	arra aterrima	МІ	+				
51050 Cerno	otina sp	MI	+				
52200 Cheu	matopsyche sp	F	+				
52315 Dipled	ctrona modesta	ΧF	+				
52530 Hydro	opsyche depravata group	F	+				
53800 Hydro	optila sp	F	+				
68025 Ectop	oria sp	F	+				
68075 Pseph	henus herricki	MI	+				
69400 Stene	elmis sp	F	+				
72501 Culici	dae	MT	+				
74100 Simul	lium sp	F	+				
77500 Concl	hapelopia sp	F	+				
-	somyia senata or nemannimyia norena	F	+				
77800 Helop	pelopia sp	F	+				
79720 Diame	esa sp	X F	+				
82730 Chiro	nomus (C.) decorus group	Т	+				
83840 Micro	tendipes pedellus group	F	+				
84210 Parate	endipes albimanus or P. catus	F	+				
84450 Polyp	edilum (Uresipedilum) flavum	F	+				
84750 Sticto	ochironomus sp	F	+				
85625 Rheo	tanytarsus sp	F	+				
85840 Tanyt	tarsus sepp	F	+				
No. Quant	itative Taxa: 0	Total Taxa	ı; 31	_			
No. Qualita	ative Taxa: 31	IC	:				
	f Organisms: 0	Qual EPT					

Appendix Table C-2. Macroinvertebrate taxa list for sites from the Mill Creek study area in 2021.

River Code: 23-046	River: <i>Una</i>	amed Trib to Co	oper Cree	k (Rossmoyne Creek	Coll. Date	:08/27/2021 RM:	0.55		
Site ID: MC114	Location	n: Between Lai	nghorst Ct.	. and Jeffrey Ct.	Sample:				
Taxa Code Taxa		CWH Taxa Tol.	Qt./Ql.	Taxa Code	Taxa	CWH Taxa Tol. Qt./0	ડ્રા.		
01801 Turbellaria		F	+						
03600 Oligochaeta		Т	+						
04985 Barbronia weberi		MT	+						
72900 Culex sp		Т	+						
79400 Zavrelimyia sp		ΧF	+						
82710 Chironomus (C.) s	p	MT	+						
84470 Polypedilum (P.) i	linoense	Т	+						
95100 Physella sp		Т	+						
96120 Menetus (Microme	enetus) dilatatus	MT .	+						
No. Quantitative Tax	a: 0	Total Taxa;	9	-					
No. Qualitative Taxa	: 9	ICI:							
Number of Organisn	umber of Organisms: 0		0						

River Code:23-065 River:	Kings Run			Coll. Date	e:09/03/2021 RM:	1.00
Site ID: MC109 Loc	ation: <i>Along Woo</i> d	len Shoe F	Hollow Ln.		Sample:	
Taxa	CWH		Taxa		CWH	
Code Taxa	Taxa Tol.	Qt./Ql.	Code	Taxa	Taxa Tol.	Qt./QI.
03600 Oligochaeta	т	+				
04901 Erpobdellidae	MT	+				
05900 Lirceus sp	МТ	+				
07800 Cambarus sp		+				
11120 Baetis flavistriga	F	+				
11130 Baetis intercalaris	F	+				
11200 Callibaetis sp	MT	+				
13521 Stenonema femoratum	F	+				
17200 Caenis sp	F	+				
21300 Hetaerina sp	F	+				
22001 Coenagrionidae	т	+				
23700 Anax sp	MT	+				
28500 Libellula sp	MT	+				
28705 Pachydiplax longipennis	Т	+				
28810 Pantala flavescens	VT	+				
45300 Sigara sp	MT	+				
45900 Notonecta sp	Т	+				
50315 Chimarra obscura	MI	+				
51050 Cernotina sp	MI _	+				
52200 Cheumatopsyche sp	F	+				
52530 Hydropsyche depravata grou		+				
53501 Hydroptilidae	F	+				
63900 Laccophilus sp	T	+				
65800 Berosus sp 67800 Tropisternus sp	MT T	+				
68075 Psephenus herricki	, MI	+				
74100 Simulium sp	 F	+				
77120 Ablabesmyia mallochi	F	+				
77500 Conchapelopia sp	F	+				
77750 Hayesomyia senata or	F	+				
Thienemannimyia norena						
77800 Helopelopia sp	F	+				
78655 Procladius (Holotanypus) sp	MT	+				
83040 Dicrotendipes neomodestus	F	+				
84210 Paratendipes albimanus or P duplicatus	. F	+				
85800 Tanytarsus sp	F	+				
95100 Physella sp	Т	+				
No. Quantitative Taxa: 0	Total Taxa;	36	_			
No. Qualitative Taxa: 36	ICI:					
Number of Organisms: 0	Qual EPT:	10				
radiliber of Organisms. U	Qual EP1.	10				

Appendix Table C-2. Macroinvertebrate taxa list for sites from the Mill Creek study area in 2021.

Qual EPT: 1

River Code:23-068 River:	Lick Run			Coll. Date	:09/03/2021 RM:	1.70
Site ID: MC108 Loca	ition: <i>Glenway W</i>	oods '			Sample:	
Taxa Code Taxa	CWH Taxa Tol.	Qt./Ql.	Taxa Code	Taxa	CWH Taxa Tol.	Qt./QI.
01801 Turbellaria	F	+				
03600 Oligochaeta	Т	+				
05900 Lirceus sp	MT	+				
06700 Crangonyx sp	MT	+				
11200 Callibaetis sp	MT	+				
22300 Argia sp	F	+				
28500 Libellula sp	MT	+				
45300 Sigara sp	MT	+				
60900 Peltodytes sp	MT	+				
63300 Hydroporini	Т	+				
63900 Laccophilus sp	Т	+				
65501 Hydrophilidae	F	+				
66500 Enochrus sp	MT	+				
67700 Paracymus sp	MT	+				
67800 Tropisternus sp	Т	+				
72700 Anopheles sp	F	+				
78200 Larsia sp	MT	+				
78655 Procladius (Holotanypus) sp	MT	+				
78702 Psectrotanypus dyari	VT	+				
84210 Paratendipes albimanus or P. duplicatus	F	+				
87400 Stratiomys sp	MT	+				
95100 Physella sp	Т	+				
98200 Pisidium sp	MT	+				
No. Quantitative Taxa: 0	Total Taxa	; 23	_			
No. Qualitative Taxa: 23	ICI:					

Number of Organisms:

Appendix Table C-2. Macroinvertebrate taxa list for sites from the Mill Creek study area in 2021.

River Code:23-068 River:	Lick Run			Coll. Date	:08/26/2021 RM:	0.98
Site ID: MC106 Loca	ation: <i>Grotto Coul</i>	t			Sample:	
Taxa Code Taxa	CWH Taxa Tol.	Qt./Ql.	Taxa Code	Taxa	CWH Taxa Tol.	Qt./Ql.
01801 Turbellaria	F	+				
03600 Oligochaeta	Т	+				
04664 Helobdella stagnalis	т	+				
04901 Erpobdellidae	MT	+				
22001 Coenagrionidae	т	+				
23700 Anax sp	MT	+				
28500 Libellula sp	MT	+				
28705 Pachydiplax longipennis	т	+				
53800 Hydroptila sp	F	+				
60900 Peltodytes sp	МТ	+				
65800 Berosus sp	MT	+				
67800 Tropisternus sp	т	+				
72150 Pericoma sp	МТ	+				
77500 Conchapelopia sp	F	+				
77750 Hayesomyia senata or Thienemannimyia norena	F	+				
78655 Procladius (Holotanypus) sp	MT	+				
80420 Cricotopus (C.) bicinctus	Т	+				
81690 Paratrichocladius sp	MI	+				
82730 Chironomus (C.) decorus gro	up T	+				
84960 Pseudochironomus sp	F	+				
87400 Stratiomys sp	MT	+				
95100 Physella sp	T	+				
No. Quantitative Taxa: 0	Total Taxa	; 22	_			
No. Qualitative Taxa: 22	ICI:	Р				

Appendix Table C-2. Macroinvertebrate taxa list for sites from the Mill Creek study area in 2021.

River Code:23-068 River:	Lick Run			Coll. Date	:08/26/2021 RM:	0.45
Site ID: MC107 Loc	ation: Queen City	and Cora	4ve.		Sample:	
Taxa Code Taxa	CWH Taxa Tol.	Qt./Ql.	Taxa Code	Таха	CWH Taxa Tol.	Qt./QI.
03600 Oligochaeta	т	+				
04901 Erpobdellidae	MT	+				
11200 Callibaetis sp	MT	+				
13521 Stenonema femoratum	F	+				
17200 Caenis sp	F	+				
22001 Coenagrionidae	Т	+				
28500 Libellula sp	MT	+				
28810 Pantala flavescens	VT	+				
60900 Peltodytes sp	MT	+				
66500 Enochrus sp	MT	+				
68901 Macronychus glabratus	F	+				
74501 Ceratopogonidae	Т	+				
77120 Ablabesmyia mallochi	F	+				
77355 Clinotanypus pinguis	MT	+				
78655 Procladius (Holotanypus) sp	MT	+				
80420 Cricotopus (C.) bicinctus	Т	+				
80510 Cricotopus (Isocladius) sylve group	stris T	+				
83040 Dicrotendipes neomodestus	F	+				
84540 Polypedilum (Tripodura) scalaenum group	F	+				
84960 Pseudochironomus sp	F	+				
85821 Tanytarsus glabrescens grou	ıp sp 7 F	+				
94800 Stagnicola sp	Т	+				
95100 Physella sp	т	+				
No. Quantitative Taxa: 0	Total Taxa	23	_			
No. Qualitative Taxa: 23	ICI:	Р				

Number of Organisms: 0

Qual EPT: 3

APPENDIX D

D-1: Mill Creek 2021 QHEI Metrics and Scores

Appendix D-1. QHEI metric scores for sites in the Mill Creek study area in 2021.

				QH	HEI Metrics				
River Mile	QHEI	Substrate	Cover	Channel	Riparian	Pool	Riffle	Gradient/ Score	Narrative
23-001	Mill Creek	[
	Year: 202	1							
26.40	69.00	14.5	14.0	13.0	5.5	10.0	4.0	37.00 - (8)	Good
19.22	69.25	14.0	16.0	12.0	4.2	9.0	4.0	9.10 - (10)	Good
18.86	70.50	13.0	18.0	13.0	3.5	10.0	3.0	9.10 - (10)	Good
18.86	61.00	13.0	12.0	11.5	4.5	10.0	0.0	9.10 - (10)	Good
18.37	83.50	16.5	18.0	14.0	7.0	11.0	7.0	9.10 - (10)	Excellent
17.96	65.00	14.0	15.0	11.0	4.0	9.0	6.0	3.51 - (6)	Good
16.73	56.00	13.0	16.0	8.5	3.5	8.0	1.0	3.58 - (6)	Fair
15.41	50.50	10.0	15.0	7.5	4.0	8.0	0.0	3.58 - (6)	Fair
13.96	65.50	15.0	10.0	15.5	0.0	12.0	7.0	4.48 - (6)	Good
13.76	75.75	17.0	16.0	14.5	3.2	12.0	7.0	4.46 - (6)	Excellent
13.27	55.50	14.0	16.0	7.0	3.5	9.0	0.0	4.48 - (6)	Fair
11.70	69.50	16.0	13.0	12.5	5.0	12.0	7.0	52.60 - (4)	Good
10.48	78.25	18.0	13.0	12.0	6.2	12.0	7.0	8.26 - (10)	Excellent
9.24	71.75	17.5	11.0	12.0	7.2	12.0	6.0	24.40 - (6)	Good
8.63	75.50	15.0	14.0	12.5	5.0	12.0	7.0	9.35 - (10)	Excellent
7.47	55.00	15.0	6.0	10.0	4.0	6.0	4.0	4.17 - (10)	Fair
6.80	28.50	2.0	2.0	7.5	3.0	4.0	4.0	1.47 - (6)	Very Poor
6.45	38.50	9.5	2.0	7.0	3.0	6.0	5.0	1.47 - (6)	Poor
4.84	49.00	11.0	11.0	6.0	6.0	9.0	0.0	1.86 - (6)	Fair
4.21	62.00	14.0	12.0	12.0	5.5	10.0	2.5	1.86 - (6)	Good
3.45	58.50	14.0	15.0	10.0	5.0	6.0	2.5	1.86 - (6)	Fair
3.15	58.50	12.0	14.0	10.0	5.5	8.0	3.0	1.86 - (6)	Fair
2.50	53.00	13.0	5.0	11.0	5.0	6.0	7.0	1.86 - (6)	Fair
1.69	57.50	11.5	15.0	9.0	5.0	9.0	2.0	1.86 - (6)	Fair
0.83	49.00	9.0	15.0	6.0	5.0	8.0	0.0	1.86 - (6)	Fair
0.50	50.00	11.0	14.0	7.0	4.0	8.0	0.0	1.86 - (6)	Fair
0.21	50.50	11.0	12.0	10.0	3.5	8.0	0.0	1.86 - (6)	Fair
23-004	West Fork	Mill Creek							
	Year: 202								
0.20	69.25	15.5	14.0	13.5	4.2	8.0	4.0	15.40 - (10)	Good
	East Fork								
1.14	Year: 202 71.50	14.5	14.0	10.0	6.0	11.0	6.0	6.90 - (10)	Excellent
0.96	78.00	15.0	16.0	14.0	5.0	11.0	7.0	6.90 - (10)	Excellent
0.66	71.00	14.0	16.0	9.0	4.0	12.0	6.0	6.90 - (10)	Excellent
0.66	64.25	11.0	14.0	12.0	3.7	11.0	2.5	6.90 - (10)	Good
2.00	07.20	11.0	17.0	12.0	5.7	11.0	2.5	0.70 - (10)	Good

Appendix D-1. QHEI metric scores for sites in the Mill Creek study area in 2021.

				QH	HEI Metrics				
River Mile	QHEI	Substrate	Cover	Channel	Riparian	Pool	Riffle	Gradient/ Score	Narrative
0.39	60.50	12.0	13.0	8.0	2.5	11.0	6.0	24.40 - (8)	Good
23-009		ne Creek RM 1	4.05) Coop	per Creek					
	Year: 202	1							
3.57	48.50	16.0	5.0	13.0	6.5	4.0	0.0	52.00 - (4)	Fair
3.42	42.50	16.5	5.0	9.0	6.0	2.0	0.0	52.00 - (4)	Poor
2.84	47.50	20.0	5.0	5.0	7.5	6.0	0.0	155.0 - (4)	Fair
2.59	49.50	20.0	5.0	9.0	7.5	4.0	0.0	90.00 - (4)	Fair
2.13	61.25	22.0	9.0	13.0	7.2	8.0	0.0	75.00 - (4)	Good
1.58	81.50	18.0	16.0	16.5	4.0	13.0	7.0	35.70 - (8)	Excellent
0.44	88.50	17.5	15.0	19.0	8.0	12.0	7.0	18.88 - (10)	Excellent
23-028	Trib to W	est Fork Cree	k @ RM 1.2	24					
`	Year: 202	1							
1.49	69.50	19.0	13.0	11.5	7.0	10.0	5.0	166.7 - (4)	Good
1.11	52.00	15.0	8.0	15.0	6.0	4.0	0.0	90.90 - (4)	Fair
		Tributary to	(Rossmoyn	e Creek RM1	4.06) Cooper	Creek			
	Year: 202	1							
0.55	45.50	17.5	6.0	9.0	5.0	4.0	0.0	86.00 - (4)	Fair
	Lick Run								
	Year: 202								
0.98	45.00	15.0	6.0	11.0	5.0	4.0	0.0	83.30 - (4)	Fair
0.45	47.50	14.5	4.0	12.0	5.0	4.0	0.0	13.16 - (8)	Fair

APPENDIX E

E-1: Mill Creek 2021 HHEI Metrics and Scores

Site ID	RM	Ye	ar	River					Lo	ocation:	
MC111	3.57	2021		(23009) (Ros	smoyne Cree	ek RM 14.0	5) Cooper	Creek	20m	dst Bechtold sewer ou	tlet, Bechtold Park
HEI Info:	HHEI Score:	8	4.0	Substrate:	29.0	Pool:	30.0	Bankfull	25.0	Channel: Recent	Flow: <i>Ephem.</i>
	QHEI Score	48.5		Substrate:	16.0	Pool:	4.0	Max Z.:	20-40 cm	Channel 13.0	Flow: Flowing
Drainage Size:	0.34		Riffle	: 0.0	Ripar:	6.5	Cover:	5.0	Pl	HW Class: PHW3I	В
FISH Info:	IBI Score:	28.0	Spe	ecies: 3.0	Sensitiv	ve Sp.: ().0 % F	Pioneer: 56		dwater Sp. 1.00	
MACRO In	fo: ICI Score	:	Ql	JAL EPT:	0 Cold	water Ta	xa.: 0	Intols:	Sens.	0 Toler:	V. Tol.
Salamande	ers: X Adul	ts: 6	— - Lar	vae: 4	— —— — Eurycea bis	slineata				Alternate	e Site ID: MR-1
MC112	3.42	2021		(23009) (Ros	smoyne Cree	ek RM 14.0	5) Cooper	Creek	20m	ust Plainfield Rd., Bec	htold Park
HEI Info:	HHEI Score:	9	0.0	Substrate:	30.0	Pool:	30.0	Bankfull	30.0	Channel: Recent	Flow: <i>Ephem.</i>
	QHEI Score	42.5		Substrate:	16.5	Pool:	2.0	Max Z.:	20-40 cm	Channel 9.0	Flow: Interst.
Drainage Size:	0.48		Riffle	0.0	Ripar:	6.0	Cover:	5.0	PI	HW Class: PHW3I	В
FISH Info:	IBI Score:	28.0	Sp	ecies: 3.0	Sensitiv	ve Sp.: (). 0 % [Pioneer: 6(— —).2 Hea	dwater Sp. 1.00	
MACRO In	fo: ICI Score	:	Ql	JAL EPT:	4 Cold	water Ta	xa.: 0	Intols:	Sens.	2 Toler:	V. Tol.
— — – Salamande	ers: X Adul	ts: 1	Lar	vae: 4	— — — Eurycea bis	ineata				Alternate	Site ID: MR-2
MC113	2.84	2021		(23009) (Ros	smoyne Cree	ek RM 14.0	5) Cooper	Creek	50m	dst. Wicklow Ave.	
HEI Info:	HHEI Score:	8	5.0	Substrate:	35.0	Pool:	20.0	Bankfull	30.0	Channel: Recent	Flow: <i>Ephem.</i>
	QHEI Score	47.5		Substrate:	20.0	Pool:	6.0	Max Z.:	> 100 cm	Channel 5.0	Flow: Interst.
Drainage Size:	1.10		Riffle	0.0	Ripar:	7.5	Cover:	5.0	Pl	HW Class: PHW3I	В
FISH Info:	IBI Score:	30.0	Sp	ecies: 4.0	Sensitiv	ve Sp.: ().0 % F	Pioneer: 68		dwater Sp. 1.00	
MACRO In	fo: ICI Score	:	Ql	JAL EPT:	0 Cold	water Ta	xa.: 0	Intols:	Sens.	0 Toler:	V. Tol.
— — – Salamande	ers: X Adul	ts:	— Lar	vae: 1	— — — Eurycea bis	ilineata				Alternate	e Site ID: MR-3
MC32	2.59	2021	l	(23009) (Ros	smoyne Cree	ek RM 14.0	5) Cooper	Creek	30m	ust Arborcrest Ct.	
HHEI Info:	HHEI Score:	8	6.0	Substrate:	36.0	Pool:	20.0	Bankfull	30.0	Channel: Recent	Flow: <i>Ephem.</i>
	QHEI Score	49.5		Substrate:	20.0	Pool:	4.0	Max Z.:	40-70 cm	Channel 9.0	Flow: Flowing
						7 -	Cover:	5.0	DI		
QHEI Info: Drainage Size:			Riffle	0.0	Ripar:	7.5	Cover.	5.0	P	HW Class: PHW3I	В
Drainage Size:	9	30.0								HW Class: PHW3I ————————————————————————————————————	<u> </u>
Drainage Size: FISH Info:	1.80		Spe		Sensitiv).0 % F	Pioneer: 34			V. Tol.

Site ID	RM	Ye	ar	River						Location	n:		
MC28	2.13	2021	(23	009) (Ros	smoyne Cree	ek RM 14.0	5) Cooper	Creek	20	00m dst Ro	nald Reagan H	lwy 126	
HHEI Info:	HHEI Score:	86	5.0 Su	bstrate:	36.0	Pool:	20.0	Bankfu	ıll 30. 0) Chan	nel: <i>Recent</i>	Flow:	Ephem.
	QHEI Score	61.2	Su	bstrate:	22.0	Pool:	8.0	Max Z.:	70-100	cm Chan	nel 13.0	Flow:	Flowing
Drainag Size:	^e 2.60		Riffle:	0.0	Ripar:	7.2	Cover:	9.0		PHW Cla	ass: WWH		
FISH Info:	IBI Score:	32.0	Specie	s: 5.0	Sensitiv	ve Sp.: ().0 % l	Pioneer:	3 4.8 H	eadwate	r Sp. 1.00		
MACRO In	fo: ICI Score	:	QUAL	EPT:	7 Cold	water Ta	xa.: 0	Intols:	Ser	ns. 1	Toler:	V. Tol	
Salamand	ers: X Adul	ts:	Larvae	: 2	Eurycea bis	slineata					Alternate	Site ID:	VIR-6
MC118	1.58	2021	(23	009) (Ros	smoyne Cree	ek RM 14.0	5) Cooper	Creek	er	nd of N. Ka	thwood Cir.		
HHEI Info:	HHEI Score:	77	7.0 Su	bstrate:	27.0	Pool:	20.0	Bankfu	ıll 30. 0) Chan	nel: <i>Recent</i>	Flow:	Ephem.
	QHEI Score	81.5	Su	bstrate:	18.0	Pool:	13.0	Max Z.:	> 100 (cm Chan	nel 16.5	Flow:	Flowing
Drainag Size:	e 3.99		Riffle:	7.0	Ripar:	4.0	Cover:	16.0		PHW CI	ass: WWH		
FISH Info:	IBI Score:	46.0	Specie	s: 11.0	Sensitiv	ve Sp.: 1	1.0 %	Pioneer:	29.0 H	eadwate	r Sp. 2.00		
MACRO In	fo: ICI Score	:	QUAL	EPT:	IO Cold	water Ta	xa.: 1	Intols:	Ser	ns. 6	Toler:	V. Tol	
Salamand	ers: X Adul	ts:	Larvae	: 4	Eurycea bis	slineata					Alternate	Site ID:	
MC119	0.46	2021	(23	009) (Ros	smoyne Cree	ek RM 14.0	5) Cooper	Creek	us	st. Reading	Rd.		
HHEI Info:	HHEI Score:	89	9.0 Su	bstrate:	29.0	Pool:	30.0	Bankfu	ıll 30. 0) Chan	nel: <i>Recent</i>	Flow:	Ephem.
	QHEI Score	:	Su	bstrate:		Pool:		Max Z.:		Chan	nel	Flow:	
Drainag Size:	^e 5.43		Riffle:		Ripar:		Cover:			PHW CI	ass: WWH		
FISH Info:	IBI Score:	46.0	Specie	s: 12.0	Sensitiv	ve Sp.: 1	1.0 %	Pioneer:	21.5 H	eadwate	r Sp. 2.00		
MACRO In	fo: ICI Score	:	QUAL	EPT:	0 Cold	water Ta	xa.: 0	Intols:	Ser	ns. 5	Toler:	V. Tol	
Salamand	ers: X Adul	ts:	Larvae	: 5	Eurycea bis	slineata					Alternate	Site ID:	
MC97	1.40	2021	(23	028) Trib t	o West Fork	Creek @ F	RM 1.24		Ki	rby Rd.			
HHEI Info:	HHEI Score:	96	5.0 Su	bstrate:	36.0	Pool:	30.0	Bankfu	ıll 30. 0) Chan	nel: <i>Recent</i>	Flow:	Ephem.
	QHEI Score	:	Su	bstrate:		Pool:		Max Z.:		— Chan	nel	Flow:	
Drainag Size:	^e 0.84		Riffle:		Ripar:		Cover:			PHW CI	ass: PHW3 E	3	
FISH Info:	IBI Score:	12.0	Specie	s: 0.0	Sensitiv	ve Sp.: ().0 %	Pioneer:	о. 00 Н	eadwate	r Sp. 0.00		
MACRO In	fo: ICI Score	:	QUAL	EPT:	9 Cold	water Ta	xa.: 2	Intols:	Ser	ns. 3	Toler:	V. Tol	
Salamand	ers: X Adul	ts: 1	Larvae	 : 7	— —— — Eurycea bis	slineata					Alternate	Site ID:	

Site ID	RM	Ye	ar River					Lo	ocation:		
MC114	0.55	2021	(23046) Unna	amed Tributa	ry to (Rossm	noyne Cre	eek RM	Hami	ilton Co. SWCD		
HHEI Info:	HHEI Score:	72	2.0 Substrate:	27.0	Pool:	20.0	Bankfull	25.0	Channel: <i>Rec</i>	ent Flov	: Ephem.
	QHEI Score	45.5	Substrate:	17.5	Pool:	4.0	Max Z.: 70	-100 cm	Channel 9. 0		Interst.
Drainage Size:	0.49		Riffle: 0.0	Ripar:	5.0	Cover:	6.0	PH	HW Class: PH	W3B	
FISH Info:	IBI Score:	12.0	Species: 1.0	Sensitiv	ve Sp.: 0	.0 % F	Pioneer: 0.00) Hea	dwater Sp. 0	.00	
MACRO In	fo: ICI Score	:	QUAL EPT:	0 Cold	water Tax	a.: 1	Intols:	Sens.	0 Toler:	V. T	ol
Salamande	ers: X Adul	ts:	Larvae: 3	— —— — Eurycea bis	slineata				Alte	rnate Site ID	:MR-4b
MC109	1.00	2021	(23065) King	s Run				Along	g Wooden Shoe I	Hollow Ln.	
HHEI Info:	HHEI Score:	90	0.0 Substrate:	35.0	Pool:	30.0	Bankfull	25.0	Channel: Rec	<i>ent</i> Flov	: Ephem.
	QHEI Score	:	Substrate:		Pool:		Max Z.:		Channel	Flow:	
Drainage Size:	0.93		Riffle:	Ripar:		Cover:		PH	HW Class: PH	W3B	
FISH Info:	IBI Score:	12.0	Species: 0.0	Sensitiv	ve Sp.: 0	.0 % F	Pioneer: 0.00	Hea	dwater Sp. 0	0.00	
MACRO In	fo: ICI Score	:	QUAL EPT:	10 Cold	water Tax	a.: 0	Intols:	Sens.	3 Toler:	1 V. To	ol. 1.0
Salamande	ers: X Adul	ts: 4	Larvae:	Eurycea bis	slineata				Alte	rnate Site ID	- — — :
MC108	1.70	2021	(23068) Lick	Run				Glen	way Woods		
HHEI Info:	HHEI Score:	70	0.0 Substrate:	20.0	Pool:	30.0	Bankfull	20.0	Channel: Rec	ent Flov	: Ephem.
	QHEI Score	:	Substrate:		Pool:		Max Z.:		Channel	Flow:	
Drainage Size:	0.19		Riffle:	Ripar:		Cover:		PH	HW Class: PH	W2	
FISH Info:	IBI Score:	12.0	Species: 1.0	Sensitiv	ve Sp.: 0	.0 % F	Pioneer: 0.00) Hea	dwater Sp. 0	0.00	. — —
MACRO In	fo: ICI Score	:	QUAL EPT:	1 Cold	water Tax	a.: 0	Intols:	Sens.	0 Toler:	1 V. To	ol. 1.0
Salamande	ers: Adul	ts:	Larvae:						Alte	rnate Site ID	- <u></u> -
MC106	0.98	2021	(23068) Lick	Run				Grott	o Court		
HHEI Info:	HHEI Score:	60	6.0 Substrate:	21.0	Pool:	20.0	Bankfull	25.0	Channel: Rec	<i>ent</i> Flov	: Ephem.
	QHEI Score	45.0	Substrate:	15.0	Pool:	4.0	Max Z.: 20	0-40 cm	Channel 11	.0 Flow:	Flowing
Drainage Size:	3.45		Riffle: 0.0	Ripar:	5.0	Cover:	6.0	PH	HW Class: MV	VH	
FISH Info:	IBI Score:	16.0	Species: 4.0	Sensitiv	ve Sp.: 0	.0 % F	Pioneer: 94.1	l Hea	dwater Sp. 0	0.00	
MACRO In	fo: ICI Score	:	QUAL EPT:	1 Cold	water Tax	a.: 0	Intols:	Sens.	1 Toler:	V. T	ol
Salamande	ers: Adul	ts:	Larvae:						Alte	nate Site ID	- — — :

Appendix E1. Primary Headwater Aquatic Life Use information for the small Mill Creek tributaries during 2021.

Site ID	RM	Year	River	Location:										
MC107	0.45	2021	(23068) Lick R	un	Queen City and Cora Ave.									
HHEI Info:	HHEI Score:	74.0	Substrate:	19.0	Pool:	30.0	Bankfull	25.0	Channel	: Recent	Flo	ow: <i>Ephem.</i>		
	QHEI Score:	47.5	Substrate:	14.5	Pool:	4.0	Max Z.:	20-40 cm	Channe	12.0	Flov	w: Flowing		
Drainage Size:	^e 3.55	Riffl	e: 0.0	Ripar:	5.0	Cover:	4.0	Pl	HW Class	:MWH				
FISH Info:	IBI Score:	20.0 S ₁	pecies: 3.0	Sensitiv	/e Sp.: 0). 0 % F	Pioneer: 80	. 7 Hea	dwater S	p. 0.0	0	-		
MACRO In	fo: ICI Score:		UAL EPT:	3 Cold	water Ta	xa.: 0	Intols:	Sens.	0 T	oler:	1 V.	Tol. 1.0		
Salamand	ers: Adult	s: La	arvae:							Alterna	te Site I	D:		

Site ID	RM	Ye	ar	River					Lo	ocation:	
MC111	3.57	2021	((23009) (Ros	smoyne Cree	ek RM 14.0	5) Cooper	Creek	20m	dst Bechtold sewer ou	tlet, Bechtold Park
HEI Info:	HHEI Score:	84	4.0	Substrate:	29.0	Pool:	30.0	Bankfull	25.0	Channel: Recent	Flow: <i>Ephem.</i>
	QHEI Score	48.5		Substrate:	16.0	Pool:	4.0	Max Z.:	20-40 cm	Channel 13.0	Flow: Flowing
Drainage Size:	0.34		Riffle:	0.0	Ripar:	6.5	Cover:	5.0	Pl	HW Class: PHW3 I	В
FISH Info:	IBI Score:	28.0	Spe	cies: 3.0	Sensitiv	/e Sp.: ().0 % F	Pioneer: 5 (dwater Sp. 1.00	
MACRO In	fo: ICI Score	:	QU	AL EPT:	0 Cold	water Ta	xa.: 0	Intols:	Sens.	0 Toler:	V. Tol.
Salamande	ers: X Adul	ts: 6	Larv	ae: 4	Eurycea bis	lineata				Alternate	e Site ID: MR-1
MC112	3.42	2021	((23009) (Ros	smoyne Cree	ek RM 14.0	5) Cooper	Creek	20m	ust Plainfield Rd., Bec	htold Park
HEI Info:	HHEI Score:	90	0.0	Substrate:	30.0	Pool:	30.0	Bankfull	30.0	Channel: Recent	Flow: <i>Ephem.</i>
	QHEI Score	42.5		Substrate:	16.5	Pool:	2.0	Max Z.:	20-40 cm	Channel 9.0	Flow: Interst.
Drainage Size:	0.48		Riffle:	0.0	Ripar:	6.0	Cover:	5.0	PI	HW Class: PHW3 I	В
FISH Info:	IBI Score:	28.0	Spe	cies: 3.0	Sensitiv	/e Sp.: ().0 % F	Pioneer: 60	 0.2 Hea	dwater Sp. 1.00	
MACRO In	fo: ICI Score	:	QU,	AL EPT:	4 Cold	water Ta	xa.: 0	Intols:	Sens.	2 Toler:	V. Tol.
— — – Salamande	ers: X Adul	ts: 1	 Larv	ae: 4	— — — Eurycea bis	ineata				Alternate	Site ID: MR-2
MC113	2.84	2021	((23009) (Ros	smoyne Cree	ek RM 14.0	5) Cooper	Creek	50m	dst. Wicklow Ave.	
HEI Info:	HHEI Score:	8	5.0	Substrate:	35.0	Pool:	20.0	Bankfull	30.0	Channel: Recent	Flow: <i>Ephem.</i>
	QHEI Score	47.5	-	Substrate:	20.0	Pool:	6.0	Max Z.:	> 100 cm	Channel 5.0	Flow: Interst.
Drainage Size:	1.10		Riffle:	0.0	Ripar:	7.5	Cover:	5.0	PI	HW Class: PHW3 I	В
FISH Info:	IBI Score:	30.0	Spe	cies: 4.0	Sensitiv	 /e Sp.: С).0 % F	Pioneer: 68		dwater Sp. 1.00	
MACRO In	fo: ICI Score	:	QU	AL EPT:	0 Cold	water Ta	xa.: 0	Intols:	Sens.	0 Toler:	V. Tol.
— — – Salamande	ers: X Adul	ts:	 Larv	ae: 1	— —— — Eurycea bis	ilineata				Alternate	e Site ID: MR-3
MC32	2.59	2021	((23009) (Ros	smoyne Cree	ek RM 14.0	5) Cooper	Creek	30m	ust Arborcrest Ct.	
HEI Info:	HHEI Score:	80	5. <i>0</i>	Substrate:	36.0	Pool:	20.0	Bankfull	30.0	Channel: Recent	Flow: <i>Ephem.</i>
	QHEI Score	49.5	,	Substrate:	20.0	Pool:	4.0	Max Z.:	40-70 cm	Channel 9.0	Flow: Flowing
Drainage Size:	1.80		Riffle:	0.0	Ripar:	7.5	Cover:	5.0	Pl	HW Class: PHW3 I	В
FISH Info:	IBI Score:	30.0	Spec	cies: 4.0	Sensitiv	/e Sp.: ().0 % F	Pioneer: 34		dwater Sp. 1.00	
			•							·	
MACRO In	fo: ICI Score	:				water Ta	xa.: 0	Intols:	Sens.	0 Toler:	V. Tol.

Site ID	RM	Ye	ar	River						Location	n:		
MC28	2.13	2021	(23	009) (Ros	smoyne Cree	ek RM 14.0	5) Cooper	Creek	20	00m dst Ro	nald Reagan H	lwy 126	
HHEI Info:	HHEI Score:	86	5.0 Su	bstrate:	36.0	Pool:	20.0	Bankfu	ıll 30. 0) Chan	nel: <i>Recent</i>	Flow:	Ephem.
	QHEI Score	61.2	Su	bstrate:	22.0	Pool:	8.0	Max Z.:	70-100	cm Chan	nel 13.0	Flow:	Flowing
Drainage Size:	^e 2.60		Riffle:	0.0	Ripar:	7.2	Cover:	9.0		PHW Cla	ass: WWH		
FISH Info:	IBI Score:	32.0	Specie	s: 5.0	Sensitiv	/e Sp.: (0.0 %	Pioneer:	3 4.8 H	eadwate	r Sp. 1.00		
MACRO In	fo: ICI Score	:	QUAL	EPT:	7 Cold	water Ta	xa.: 0	Intols:	Ser	ns. 1	Toler:	V. Tol	
Salamand	ers: X Adul	ts:	Larvae	: 2	Eurycea bis	slineata					Alternate	Site ID:	VIR-6
MC118	1.58	2021	(23	009) (Ros	smoyne Cree	ek RM 14.0	5) Cooper	Creek	er	nd of N. Ka	thwood Cir.		
HHEI Info:	HHEI Score:	77	7.0 Su	bstrate:	27.0	Pool:	20.0	Bankfu	ıll 30. 0) Chan	nel: <i>Recent</i>	Flow:	Ephem.
	QHEI Score	81.5	Su	bstrate:	18.0	Pool:	13.0	Max Z.:	> 100 (cm Chan	nel 16.5	Flow:	Flowing
Drainage Size:	^e 3.99		Riffle:	7.0	Ripar:	4.0	Cover:	16.0		PHW Cla	ass: WWH		
FISH Info:	IBI Score:	46.0	Specie	s: 11.0	Sensitiv	/e Sp.: 1	1.0 %	Pioneer:	- — <u>—</u> 29.0 Н	eadwate	r Sp. 2.00		
MACRO In	fo: ICI Score	· —— ·	QUAL	 EPT: 1	0 Cold	water Ta	xa.: 1	Intols:	Ser	ns. 6	Toler:	V. Tol	
Salamand	ers: X Adul	ts:	Larvae	: 4	Eurycea bis	slineata					Alternate	Site ID:	
MC119	0.46	2021	(23	009) (Ros	smoyne Cree	ek RM 14.0	5) Cooper	Creek	us	st. Reading	Rd.		
HHEI Info:	HHEI Score:	89	9.0 Su	bstrate:	29.0	Pool:	30.0	Bankfu	ıll 30. 0) Chan	nel: <i>Recent</i>	Flow:	Ephem.
	QHEI Score	:	Su	bstrate:		Pool:		Max Z.:		Chan	nel	Flow:	
Drainage Size:	^e 5.43		Riffle:		Ripar:		Cover:			PHW CI	ass: WWH		
FISH Info:	IBI Score:	46.0	Specie	s: 12.0	Sensitiv	/e Sp.: 1	1.0 %	Pioneer:	21.5 H	eadwate	r Sp. 2.00		
MACRO In	fo: ICI Score	:	QUAL	 EPT: 1	0 Cold	water Ta	xa.: 0	Intols:	Ser	ns. 5	Toler:	V. Tol	
Salamand	ers: X Adul	ts:	Larvae	: 5	= == = Eurycea bis	slineata					Alternate	Site ID:	
MC97	1.40	2021	(23	028) Trib t	o West Fork	Creek @ F	RM 1.24		Ki	rby Rd.			
HHEI Info:	HHEI Score:	96	5.0 Su	bstrate:	36.0	Pool:	30.0	Bankfu	ıll 30. 0) Chan	nel: <i>Recent</i>	Flow:	Ephem.
	QHEI Score	:	Su	bstrate:		Pool:		Max Z.:		— Chan	nel	Flow:	
Drainage Size:	e 0.84		Riffle:		Ripar:		Cover:			PHW CI	ass: PHW3 E	3	
FISH Info:	IBI Score:	12.0	Specie	s: 0.0	Sensitiv	/e Sp.: (0.0 %	Pioneer:	о. 00 Н	eadwate	r Sp. 0.00		
MACRO In	fo: ICI Score	:	QUAL	EPT:	9 Cold	water Ta	xa.: 2	Intols:	Ser	ns. 3	Toler:	V. Tol	
Salamand	ers: X Adul	ts: 1	Larvae	: 7	— —— — Eurycea bis	lineata					Alternate	Site ID:	

Site ID	RM	Ye	ar River					Lo	ocation:		
MC114	0.55	2021	(23046) Unna	amed Tributa	ry to (Rossm	noyne Cre	eek RM	Hami	ilton Co. SWCD		
HHEI Info:	HHEI Score:	72	2.0 Substrate:	27.0	Pool:	20.0	Bankfull	25.0	Channel: <i>Rec</i>	ent Flov	: Ephem.
	QHEI Score	45.5	Substrate:	17.5	Pool:	4.0	Max Z.: 70	-100 cm	Channel 9. 0		Interst.
Drainage Size:	0.49		Riffle: 0.0	Ripar:	5.0	Cover:	6.0	PH	HW Class: PH	W3B	
FISH Info:	IBI Score:	12.0	Species: 1.0	Sensitiv	ve Sp.: 0	.0 % F	Pioneer: 0.00) Hea	dwater Sp. 0	.00	
MACRO In	fo: ICI Score	:	QUAL EPT:	0 Cold	water Tax	a.: 1	Intols:	Sens.	0 Toler:	V. T	ol
Salamande	ers: X Adul	ts:	Larvae: 3	— —— — Eurycea bis	slineata				Alte	rnate Site ID	:MR-4b
MC109	1.00	2021	(23065) King	s Run				Along	g Wooden Shoe I	Hollow Ln.	
HHEI Info:	HHEI Score:	90	0.0 Substrate:	35.0	Pool:	30.0	Bankfull	25.0	Channel: Rec	<i>ent</i> Flov	: Ephem.
	QHEI Score	:	Substrate:		Pool:		Max Z.:		Channel	Flow:	
Drainage Size:	0.93		Riffle:	Ripar:		Cover:		PH	HW Class: PH	W3B	
FISH Info:	IBI Score:	12.0	Species: 0.0	Sensitiv	ve Sp.: 0	.0 % F	Pioneer: 0.00) Hea	dwater Sp. 0	0.00	
MACRO In	fo: ICI Score	:	QUAL EPT:	10 Cold	water Tax	a.: 0	Intols:	Sens.	3 Toler:	1 V. To	ol. 1.0
Salamande	ers: X Adul	ts: 4	Larvae:	Eurycea bis	slineata				Alte	rnate Site ID	- — — :
MC108	1.70	2021	(23068) Lick	Run				Glen	way Woods		
HHEI Info:	HHEI Score:	70	0.0 Substrate:	20.0	Pool:	30.0	Bankfull	20.0	Channel: Rec	ent Flov	: Ephem.
	QHEI Score	:	Substrate:		Pool:		Max Z.:		Channel	Flow:	
Drainage Size:	0.19		Riffle:	Ripar:		Cover:		PH	HW Class: PH	W2	
FISH Info:	IBI Score:	12.0	Species: 1.0	Sensitiv	ve Sp.: 0	.0 % F	Pioneer: 0.00) Hea	dwater Sp. 0	0.00	. — —
MACRO In	fo: ICI Score	:	QUAL EPT:	1 Cold	water Tax	a.: 0	Intols:	Sens.	0 Toler:	1 V. To	ol. 1.0
Salamande	ers: Adul	ts:	Larvae:						Alte	rnate Site ID	- <u></u> -
MC106	0.98	2021	(23068) Lick	Run				Grott	o Court		
HHEI Info:	HHEI Score:	60	6.0 Substrate:	21.0	Pool:	20.0	Bankfull	25.0	Channel: Rec	<i>ent</i> Flov	: Ephem.
	QHEI Score	45.0	Substrate:	15.0	Pool:	4.0	Max Z.: 20	0-40 cm	Channel 11	.0 Flow:	Flowing
Drainage Size:	3.45		Riffle: 0.0	Ripar:	5.0	Cover:	6.0	PH	HW Class: MV	VH	
FISH Info:	IBI Score:	16.0	Species: 4.0	Sensitiv	ve Sp.: 0	.0 % F	Pioneer: 94.1	l Hea	dwater Sp. 0	0.00	
MACRO In	fo: ICI Score	:	QUAL EPT:	1 Cold	water Tax	a.: 0	Intols:	Sens.	1 Toler:	V. T	ol
Salamande	ers: Adul	ts:	Larvae:						Alte	nate Site ID	- — — :

Appendix E1. Primary Headwater Aquatic Life Use information for the small Mill Creek tributaries during 2021.

Site ID	RM	Year	River	Location:										
MC107	0.45	2021	(23068) Lick R	un	Queen City and Cora Ave.									
HHEI Info:	HHEI Score:	74.0	Substrate:	19.0	Pool:	30.0	Bankfull	25.0	Channel	: Recent	Flo	ow: <i>Ephem.</i>		
	QHEI Score:	47.5	Substrate:	14.5	Pool:	4.0	Max Z.:	20-40 cm	Channe	12.0	Flov	w: Flowing		
Drainage Size:	^e 3.55	Riffl	e: 0.0	Ripar:	5.0	Cover:	4.0	Pl	HW Class	:MWH				
FISH Info:	IBI Score:	20.0 S ₁	pecies: 3.0	Sensitiv	/e Sp.: 0). 0 % F	Pioneer: 80	. 7 Hea	dwater S	p. 0.0	0	-		
MACRO In	fo: ICI Score:		UAL EPT:	3 Cold	water Ta	xa.: 0	Intols:	Sens.	0 T	oler:	1 V.	Tol. 1.0		
Salamand	ers: Adult	s: La	arvae:							Alterna	te Site I	D:		